• Title/Summary/Keyword: large stud

Search Result 49, Processing Time 0.026 seconds

Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC

  • Hu, Yuqing;Zhao, Guotang;He, Zhiqi;Qi, Jianan;Wang, Jingquan
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.103-118
    • /
    • 2020
  • The static behavior of grouped large-headed studs (d = 30 mm) embedded in ultra-high performance concrete (UHPC) was investigated by conducting push-out tests and numerical analysis. In the push-out test, no splitting cracks were found in the UHPC slab, and the shank failure control the shear capacity, indicating the large-headed stud matches well with the mechanical properties of UHPC. Besides, it is found that the shear resistance of the stud embedded in UHPC is 11.4% higher than that embedded in normal strength concrete, indicating that the shear resistance was improved. Regarding the numerical analysis, the parametric study was conducted to investigate the influence of the concrete strength, aspect ratio of stud, stud diameter, and the spacing of stud in the direction of shear force on the shear performance of the large-headed stud. It is found that the stud diameter and stud spacing have an obvious influence on the shear resistance. Based on the test and numerical analysis results, a formula was established to predict the load-slip relationship. The comparison indicates that the predicted results agree well with the test results. To accurately predict the shear resistance of the stud embedded in UHPC, a design equation for shear strength is proposed. The ratio of the calculation results to the test results is 0.99.

Strangulating Large Colon Volvulus: A Diagnostic and Surgical Challenge in a Post-Partum Thoroughbred Mare

  • Jungho Yoon;Youngjong Kim;Jongyoung Park;In-Soo Choi;Peter Colket Rakestraw;Ahram Kim
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.405-410
    • /
    • 2022
  • An 11-year-old thoroughbred post-partum broodmare presented with the symptoms of colic. The physical and clinical examinations indicated a large colon displacement or volvulus. Immediate surgical intervention was performed, and a strangulating large colon volvulus (LCV) was defined as a volvulus of >540° in the counterclockwise direction. After correcting and assessing the gut viability, approximately 80% of the entire large colon was resected and anastomosed using an end-to-end technique. With supportive care after surgery, the horse regained its appetite and vitality without significant clinical complications and was discharged on postoperative day 9. This report presents the first surgical correction using a large colon resection and anastomosis (LCRA) and the critical care for a strangulating LCV in a horse in Korea. This case enhances the current knowledge of clinical LCV and the related considerations for treatment.

Numerical analysis of large stud shear connector embedded in HFRC

  • He, Yu Liang;Zhang, Chong;Wang, Li Chao;Yang, Ying;Xiang, Yi Qiang
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.595-608
    • /
    • 2021
  • To investigate the mechanical behavior of large stud shear connector embedded in hybrid fiber-reinforced concrete (HFRC), a refined 3D nonlinear finite element (FE) model incorporating the constitutive model of HFRC was developed using ANSYS. Firstly, the test results conducted by the authors (He et al. 2017) were used to validate FE model of push out tests. Secondly, a total of 27 specimens were analyzed with various parameters including fiber volume fractions of HFRC, diameter of studs and HFRC strength. Finally, an empirical equation considering the contribution of steel fiber (SF) and polypropylene fiber (PF) was recommended to estimate the ultimate capacity of large stud shear connector embedded in HFRC.

Fatigue Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 피로거동)

  • Shim, Chang Su;Lee, Pil Goo;Kim, Hyun Ho;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.621-628
    • /
    • 2003
  • Stud shear connectors are the most commonly used shear connectors: up to 22mm studs are usually used in steel-concrete composite structures. To expand the current design codes for stud connectors, large studs with a diameter of more than 25mm should be investigated. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, fatigue behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range was evaluated through shear tests on 25mm, 27mm, and 30mm studs and compared with those from static tests. The fatigue behavior of large studs was discussed in terms of residual slip and load-slip curves. The initiation of fatigue cracks in the welding part could be detected through the history of displacement range. Test results showed that the design fatigue endurance of S-N curves in current design codes could be applied to large stud shear connector.

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Determination of shear stiffness for headed-stud shear connectors using energy balance approach

  • Ye, Huawen;Huang, Ruosen;Tang, Shiqing;Zhou, Yu;Liu, Jilin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.477-487
    • /
    • 2022
  • The shear stiffness of headed-stud shear connectors has no unified definition due to the nonlinear characteristics of its load-slip relationship. A unified framework was firstly adopted to develop a general expression of shear load-slip equation for headed-stud shear connectors varying in a large parameter range based on both force and energy balance. The pre- and post-yield shear stiffness were then determined through bilinear idealization of proposed shear load-slip equation. An updated and carefully selected push-out test database of 157 stud shear connectors, conducting on studs 13~30mm in diameter and on concretes 30~180 MPa in cubic compressive strength, was used for model regression and sensitivity analysis of shear stiffness. An empirical calculation model was also established for the stud shear stiffness. Compared with the previous models through statistical analysis, the proposed model demonstrates a better performance to predict the shear load-slip response and stiffness of the stud shear connectors.

Research on Optimal Taper Stud Bolts for Steam Turbines Using the FEM (유한요소법을 이용한 증기터빈용 최적 테이퍼 스터드 볼트에 관한 연구)

  • 이부윤;김태완
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.8-16
    • /
    • 2000
  • The thread load distribution as applied to large stud bolts for steam turbines is investigated using the finite element method. The stress concentration in tapered threads is studied with varying prestress and taper angle. Based upon the thread load distribution, the optimal taper angles to reduce the stress concentration are determined for various prestresses. The presented finite element model is validated by comparing results of the calculated thread load with analytic ones. The optimal taper angles obtained from this research can be used in designing tapered threads of large stud bolts for steam turbines.

  • PDF

DEVELOP AND USE OF STUD PENETRATE WELDING TECHNOLOGY IN COMPOSITE FLOOR OF STEEL STRUCTURE

  • Fu, Jifei;Zhang, Youquan;Ma, Dezhi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.349-354
    • /
    • 2002
  • Stud penetrate welding is an important item of composite floor in modern steel structure, especially in high-rise buildings. But it is difficult to get satisfied welding quality due to all kinds of factors. In this paper, the author put forward a new welding procedure named method of energy control through analysis and comparison of the wave curves of stud welding based on large amount of experiments and tests in laboratory and construction areas. The use of this welding procedure in some large engineering in recent years proved that this method is effective and practicable

  • PDF

Structural Behavior of the Cylinder Cover Stud of Marine Diesel Engine (박용엔진 실린더 커버 스터드의 구조거동 분석)

  • Kim, Byung-Joo;Lee, Jae-Ohk;Park, Jin-Soo;Kim, Se-Lak
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.267-268
    • /
    • 2006
  • The cylinder cover stud of low-speed marine diesel engine is more than just a stud. It is a large structural element occasionally weighing over 200 kg used for assembling the combustion chamber components. Therefore, to understand the structural behavior of the stud and design it safely is quite important considering a catastrophic failure which can be arisen from an inadequate use of it. In this paper, the analysis results of the structural behavior of the stud is introduced. Strain measurement results compared with FE analysis results are summarized. The results showed that 1) the stud stress increased with engine operating load, 2) the maximum stress amplitude was about 10 MPa which is far smaller than the stud's fatigue strength of 61 MPa, 3) the stress ratio is higher than 0.9 and the stud's load factor is about 20 %, and 4) about 7 % of initial pressure tightening load was reduced while changing to a nut tightened condition.

  • PDF

Review of stud shear resistance prediction in steel-concrete composite beams

  • Bonilla, Jorge;Bezerra, Luciano M.;Mirambell, Enrique;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.355-370
    • /
    • 2018
  • In steel-concrete composite beams, longitudinal shear forces are transferred across steel flange-concrete slab interface by means of shear connectors. The connector behavior is highly non-linear and involves several complex mechanisms. The design resistance and stiffness of composite beams depends on the shear connection behavior and the accuracy in the connector resistance prediction is essential. However determining the stud shear resistance is not an easy process: analytical methods do not give an adequate response to this problem and it is therefore necessary to use experimental methods. This paper present a summary of the main procedures to predict the resistance of the stud shear connectors embedded in solid slab, and stud shear connectors in composite slab using profiled steel sheeting with rib perpendicular to steel beam. A large number of experimental studies on the behavior of stud shear connectors and reported in the literature are also summarized. A comparison of the stud shear resistance prediction using six reference codes (AISC, AASHTO, Eurocode-4, GB50017, JSCE and AS2327.1) and other procedures reported in the literature against experimental results is presented. From this exercise, it is concluded that there are still inaccuracies in the prediction of stud shear resistance in all analysed procedures and that improvements are needed.