• 제목/요약/키워드: large scale tests

Search Result 600, Processing Time 0.036 seconds

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing (병렬 연산을 이용한 방출 단층 영상의 재구성 속도향상 기초연구)

  • Park, Min-Jae;Lee, Jae-Sung;Kim, Soo-Mee;Kang, Ji-Yeon;Lee, Dong-Soo;Park, Kwang-Suk
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2009
  • Purpose: Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. Materials and Methods: The preliminary tests for the possibility on virtual manchines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Results: Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Conclusion: Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

Histological Study of the Minute Tubercles on Larval Skin Surface of a Korean Endemic Bitterling, Acheilognathus koreensis (Pisces, Cyprinidae), with Its Larval Growth (칼납자루, Acheilognathus koreensis (어강, 잉어목) 자어의 표피돌기에 관한 조직학적 연구)

  • Kim, Chi-Hong;Park, Jong-Young;Park, Min-Kyong;Kang, Eon-Jong;Kim, Jong-Hwa
    • Korean Journal of Ichthyology
    • /
    • v.18 no.3
    • /
    • pp.170-177
    • /
    • 2006
  • Morphology and distribution of the minute tubercles projected on the skin surface of larvae with its development was observed in the Korean bitterling, Acheilognathus koreensis, known as an endemic freshwater fish. The epidermis of the larvae consisted of a thin single layer, having smaller basophilic flat or round-flattened basal cells. In between the single cell layer, two or three layers were added and they consisted mainly of large epidermal cells just above basal cells. These large unicellular epidermal cells were mainly scale-shaped and rarely cone-shaped, and do not give any histochemical tests for mucosubstances. They were present in anterior region and most region of yolk sac. Whereas, vestigial epidermal cells were distributed in the body region and the caudal fin-fold region. These two kinds of epidermal cells, called minute tubercles, increased in number and height from Just to 8 days after hatching, but as the larvae develop gradually, they became to reduce. At 31days after hatching of free swimming stage and absolute absorption stage of the yolk sac, the minute tubercles did not exist on the whole skin of the larvae.

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.

An Experimental Study on Establishing Criteria of Gripping Work in Construction Site (건설 현장 악력 작업안전 기준 설정에 관한 실험적 연구)

  • 손기상;이인홍;최만진;안병준
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.81-95
    • /
    • 1995
  • Now, safety assurance in construction sites should be accomplished by its own organization rather than control of the code or government. It is believed that the safety assurance can be considerably improved by a lecture or an education using the existing theories or literatures up to now, but it is thought that fundamental safety assurance we not able to be accomplished without developing safety devices '||'&'||' equipment or taking fundamental measures, based on the result analyzed from workers behaviors. There are various behaviors of the workers showed in construction site, but only tests for hammerusing works such as form, re-bar, stone workers directly related to the grip strength are mainly performed, investigated and measured here for the study. The above works are similar to power grip, 7th picture on seven items which are categorized for hand grip types(Ammermin 1956 ; Jones ; Kobrick 1958). Measurements of grip strength are commonly taken in anthropometric surveys. They are easy to administer but unfortunately it is rather dubious whether they yield any data that are of interest to the engineer. Very fewer controls of tools are grasped and squeesed studies showed very little overall correlation between grip strength and other measures of bodily strength (Laubach, Kromer, and Thordsen 1972), but hammer-using work which is practically progressed in construction site are mainly influenced with grip strength. According to the investigation on work measurement, it is shown that 77% of form worker are using hammer to be related to grip strength. In this study, it is particularly noticed that wearing safety gloves in construction site is required for workers safety but 20% difference between grip strength with safety gloves and without ones are commonly neglected in the site(Fig. 1). Nevertheless, safety operation with consideration of the above 20% difference is not considered in the construction site. Factors of age, kinds of work, working time, with or without safety gloves are in vestigated '||'&'||' collected at the sites for this study. Test, not at each working hour but at 14 : 00 when the almost all of the workers think the most tired, resulting from the questionaires, also when it is shown on the research report has been performed and compared for main kinds of works : form '||'&'||' re-bar work. Tests were performed with both left SE rightand of the workers simultaneously in construction site using Rand Dynamometer(Model 78010, Lafayette Instrument Co., Indiana, U.S.A) by reading grip strength on the gauge while they are pulling, and then by interviewing on their ages, works, experiences and etc., directly. The above tests have been performed for the dates of 15th march-26th May '95 with consideration of site condition. And even if various factors of ambient temperature on the testing date, working condition, individual worker's habit and worker's condition of the previous ate are concerned with the study. Those are considered as constants in this study. Samples are formwork 53, rebar 62, electrician 5, plumber 4, welding 1 from D construction Co., Ltd, ; formwork 12, re-bar 5, electrician 2, from S construction Co., Ltd, , formwork 78, re-bar 18, plumber 31, electrician 13, labor 48, plumber 31, plasterer 15, concrete placer 6, water proof worker 3, maisony 5 from B construction Co., Ltd. As In the previously mentioned, main aspect to be investigated in this study will be from '||'&'||' re-bar work because grip strength will be directly applied to these two kinds of works ; form '||'&'||' re-bar work, eventhough there are total 405 samples taken. It is thought that a frequency of accident occurrence will be mainly two work postures "looking up '||'&'||' looking down" to be mainly sorted, but this factor is not clarified in this study because It will be needed a lot of work more. Tests has been done at possible large scale of horizontally work-extended sites within one hour in order to prevent or decrease errors '||'&'||' discrepancies from time lag of the test. Additionally, the statistical package computer program SPSS PC+has been used for the study.

  • PDF

Study on the Relationships Among Perceived Shopping Values, Brand Equity, and Store Loyalty of Korean and Chinese Consumers: A Case of Large Discount Store (한국과 중국 소비자의 쇼핑 경험가치 지각과 브랜드자산 및 점포충성도의 관계에 관한 비교 연구: 대형 할인점을 중심으로)

  • Hwang, Soonho;Oh, Jongchul;Yoon, Sungjoon
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.209-237
    • /
    • 2012
  • 1. Research Purpose Consumers rely on various clues to evaluate their decision to patronize a retail store, and store brand is one of them (Dodds 1991; Grewal et al. 1998). As consumers find ever increasing variety of contact points connecting them to specific store, the value of experiential shopping as a means of increasing store's brand equity warrants greater attention from scholars of retail management. Retail shopping values are credited for creating not only cognitive experiences like brand knowledge but also emotional experiences such as shopping pleasure and pride (Schmitt 1999). This may be because today's consumers place emphasis on emotional values associated with shopping pleasure, lifestyle brought to life, brand relationship, and store atmosphere more than utilitarian values such as product quality and price. Many previous literature found this to be true (Ahn and Lee 2011; Mathwick et al. 2001). This brings forth important research issues and questions regarding the roles of shopping experiential values and brand equity with regard to consumer's retail patronage choice. However, despite this importance, research on this area remains quite inadequate (Hwang 2010). For this reason, this study aims to verify the relationships among experiential shopping values, retail store brand equity and tries to link that with customer loyalty by surveying large-scale discount store shoppers in Korea and China. 2. Research Contents In order to carry out the research objective, this study conducted comprehensive literature survey on previous literature by discussing major findings and implications with regard to shopping values and retail brand equity and store loyalty. For data collection, researcher employed survey-based research method where data were collected in two major cities of Korea (Seoul) and China (Bejing) and sampling frame was based on patrons of large discount stores in both countries. Specific research questions raised in this study are as follows; RQ1: How do Korean and Chinese consumers differently perceive of shopping values regarding shopping at large-sclae discount stores? RQ2: Are there differences in consumers' emotional consumption propensities? RQ3: Do Korean and Chinese consumers display different perceptions of brand equity towards large-scale discount stores? RQ4: Are there differences in relationships between shopping values and brand equity for Korean and Chinese consumers? For statistical analysis, SPSS17.0, AMOS17.0 and SmartPLS were employed. 3. Research Results The data collected through face-to-face survey conducted in Seoul and Bejing revealed appropriate data validity and reliability as a result of exploratory/confirmatory factor analysis and reliability tests, andh SEM model yielding satisfactory model fitness. The result of the study may be summarized by three main points. First, as a result of testing differences in consumption dispositions, Chinese consumers showed higher scores in aesthetic and symbolic dispositions, whereas Korean consumers scored higher in hedonic disposition. Second, testing on perceptions toward brand equity of large discount stores showed that Korean consumers exhibited more positive perceptions of brand awareness and brand image than Chinese counterparts. Third, the result of exploratory factor analysis on the experiential shopping values revealed different factors for each country. On Korean side, consumer interest value, aesthetic value, and hedonic value were prominent, whereas on Chinese side, hedonic value, aesthetic value, consumer interest value, and service excellence value were found salient. 4. Research Implications While many previous studies on inter-country differences in retailing area mainly focused on cultural dispositions or orientations to explain the differences, this study sets itself apart by specifically targeting individual consumer's shopping values from an experiential viewpoint. The study result provides important theoretical as well as practical implications for large-scale discount store, especially the impotance of fully exploring the linkage between shopping values and brand equity, which has significant influence on loyalty. Therefore, the specific implications deriving from the result shed some important insights upon the consumption values based on shopping experiences and brand equity. The differences found in store shoppers between the two countries may also provide useful insights for Korean and Chinese retailers who plan to expand their operations globally. Related strategic implications derived from this study is the importance of localizing retail strategy which is based on the differences found in experiential shopping values between the two country groups. Especially the finding that Chinese consumers value consumer interest and service excellence, whereas Koreans place importance on hedonic or aesthetic values indicates the need to differentiate the consumer's psychographical profiles when it comes to expanding retail operations globally. Particularly important will be to pursue price-orienated strategy in China in consideration of the high emphasis on consumer interests and service excellence, but to emphasize the symbolic aspects of brand equity in Korea by maximizing the brand equity associated with aesthetic values and hedonic orientations. 5. Recommendations This study focused on generic retail branded discount stores in both countries, thus making it difficult to tease out store-specific strategies based on specific retail brands. Future studies may benefit fro employing actual brand names in survey questionnaire to verify relationship between shopping values and brand-based store strategy. As with other studies of this nature, this study needs to strengthen the result's generalizability by selecting respondents from a wider spectrum of respondents.

  • PDF

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.