• 제목/요약/키워드: large scale structure

검색결과 1,310건 처리시간 0.03초

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • 한국해양공학회지
    • /
    • 제37권6호
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

LARGE SCALE MAGNETOGENESIS THROUGH RADIATION PRESSURE

  • LANGER MATHIEU;PUGET JEAN-LOUP;AGHANIM NABILA
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.553-556
    • /
    • 2004
  • We present a new model for the generation of magnetic fields on large scales occurring at the end of cosmological reionisation. The inhomogeneous radiation provided by luminous sources and the fluctuations in the matter density field are the major ingredients of the model. More specifically, differential radiation pressure acting on ions and electrons gives rise to electric currents which induce magnetic fields on large scales. We show that on protogalactic scales, this process is highly efficient, leading to magnetic field amplitudes of the order of $10^{-1l}$ Gauss. While remaining of negligible dynamical impact, those amplitudes are million times higher than those obtained in usual astrophysical magnetogenesis models. Finally, we derive the relation between the power spectrum of the generated field and the one of the matter density fluctuations. We show in particular that magnetic fields are preferably created on large (galactic or cluster) scales. Small scale magnetic fields are strongly disfavoured, which further makes the process we propose an ideal candidate to explain the origin of magnetic fields in large scale structures.

실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가 (Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Response using a Real-time Hybrid Test Method)

  • 정희산;이성경;박은천;윤경조;민경원;이헌재;최강민;문석준;정형조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.655-660
    • /
    • 2007
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

  • PDF

실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가 (Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Responses Using a Real-time Hybrid Test Method)

  • 박은천;이성경;윤경조;정희산;이헌재;최강민;문석준;정형조;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.131-138
    • /
    • 2008
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

Reynolds수 ${10}^{4}$일때 천이영역에서의 왼형제트의 Large-Scale 구조에 관한 연구 (Large-scale structure of circular jet in transitional region at reynolds number of ${10}^{4}$)

  • 이택식;최은수
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.823-829
    • /
    • 1986
  • 본 연구에서는 와동의 대류속도를 H.H. Brunn의 방법과 달리 측정하였으며, 또 이를 이용하여 와동의 중심들 사이의 간격을 구하고자 한다. 이를 위하여 먼저 포텐셜코어영역(potential core region)과 혼합층영역(mixing layer region)의 경계 및 천이영역(transition region)과 난류영역(turbulent region)경계를 구하여야 한다. 각 영역들의 대체적인 구분은 Fig.1과 같다.

Topological Analysis of Large Scale Structure Using the Final BOSS Sample

  • 최윤영;김주한
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.43.2-43.2
    • /
    • 2014
  • We present the three-dimensional genus topology of large-scale structure using the CMASS sample of the Final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) data. To estimate the uncertainties in the measured genus, we very carefully construct mock CMASS surveys along the past light cone from the Horizon Run 3. We find that the shape of the observed genus curve agrees very well with the prediction of perturbation theory and with the mean topology of the mock surveys. However, comparison with simulations show that the observed genus curve slightly deviates from the theoretical Gaussian expectation. From the deviation, we further quantify the primordial non-Gaussian contribution.

  • PDF

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

NEW PROBES OF INTERGALACTIC MAGNETIC FIELDS BY RADIOMETRY AND FARADAY ROTATION

  • KRONBERG PHILIPP P.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.343-347
    • /
    • 2004
  • The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > ${\~}0.l{\mu}G$ or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, ${\~}$10 Gyr ago, as now.

A Deep Convolutional Neural Network approach to Large Scale Structure

  • Sabiu, Cristiano G.
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.53.3-53.3
    • /
    • 2019
  • Recent work by Ravanbakhsh et al. (2017), Mathuriya et al. (2018) showed that convolutional neural networks (CNN) can be trained to predict cosmological parameters from the visual shape of the large scale structure, i.e. the filaments, clusters and voids of the cosmic density field. These preliminary works used the dark matter density field at redshift zero. We build upon these works by considering realistic mock galaxy catalogues that mimic true observations. We construct light-cones that span the redshift range appropriate for current and near future cosmological surveys such as LSST, EUCLID, WFIRST etc. In summary, we propose a novel multi-image input CNN to track the evolution in the morphology of large scale structures over cosmic time to constrain cosmology and the expansion history of the Universe.

  • PDF

A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross air-flow

  • Lee, Kee-Man;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1997년도 제15회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.163-173
    • /
    • 1997
  • This article presents an application of a large-scale structural mixing model (Broadwell et al. 1984) to the blowout of turbulent reacting jets discharging perpendicularly into an unconfined cross air-flow. In an analysis of a common stability curve, a plausible explanation can be made that the phenomenon of blowout is related only to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at fixed positions at all times according to the velocity ratio R. Measurements of the lower blowout limits in the liftable flame agree qualitatively with the blowout parameter ${\varepsilon}$, proposed by Broadwell et al. Good agreement between the results calculated by a modified blowout parameter ${\varepsilon}^'$ and experimental results confirms the important effect of a large-scale structure in specifying the stabilization feature of blowouts.

  • PDF