• Title/Summary/Keyword: large mass method

Search Result 647, Processing Time 0.03 seconds

Optimum Design of Suspension on Impulse to AGV (AGV가 받는 충격량에 대한 현가장치의 최적설계)

  • 김재헌;최환도;김중완;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.361-365
    • /
    • 2002
  • This research is presented for optimizing the coefficients of spring and damper by impulse which is applied to AGV when the two containers are loaded on AGV. The suspension is estimated to the condition that two containers, initial velocity of container, initial height of container and maximum of suspension stroke. The coefficients of spring and damper are calculated numerically through Newmark method uses finite difference expansions. The procedure of calculation is applied by one DOFs of mass-spring-damper system. The coefficients of spring and damper have large value as increase of height or decrease of stroke. The result of calculation is shown in graph and the investigation is used AGV design.

  • PDF

A Study on Design and Control of Tracking Actuator in Optical Disc (광디스크용 트랙킹 구동기의 설계 및 제어에 관한 연구)

  • 최인묵;한창수;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.454-457
    • /
    • 1995
  • In optical disc system, tracking actuator is consisted of coarse actuator and fine tracking actuator. This, two-stage actuator, requires many devices and two servos for large stroke and precisional displacement. These complicate configuration increases moving mass. So dynamic characteristics become bad, that is, sensitivity of high frequency gain decrease. In this paper, frequency performance is willing to be better as so one dimensional tracking actuator is designed. In order to investigate the performance of the proposed tracking actuator, the Bode diagram is plotted with Dynamic analyzer and friction characteristic is explained. Finally, tracking error performance is ins investigated into 0.1 .mu.m resolution with MATLAB simulation.

  • PDF

Data-Compression-Based Resource Management in Cloud Computing for Biology and Medicine

  • Zhu, Changming
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-31
    • /
    • 2016
  • With the application and development of biomedical techniques such as next-generation sequencing, mass spectrometry, and medical imaging, the amount of biomedical data have been growing explosively. In terms of processing such data, we face the problems surrounding big data, highly intensive computation, and high dimensionality data. Fortunately, cloud computing represents significant advantages of resource allocation, data storage, computation, and sharing and offers a solution to solve big data problems of biomedical research. In order to improve the efficiency of resource management in cloud computing, this paper proposes a clustering method and adopts Radial Basis Function in order to compress comprehensive data sets found in biology and medicine in high quality, and stores these data with resource management in cloud computing. Experiments have validated that with such a data-compression-based resource management in cloud computing, one can store large data sets from biology and medicine in fewer capacities. Furthermore, with reverse operation of the Radial Basis Function, these compressed data can be reconstructed with high accuracy.

Study on sensitivity of modal parameters for suspension bridges

  • Liu, Chunhua;Wang, Ton-Lo;Qin, Quan
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.453-464
    • /
    • 1999
  • Safety monitoring systems of structures generally resort to detecting possible changes of dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement these techniques. Conventional structural eigenvalue problems are discussed in the scope of those systems with deterministic parameters. Large and flexible structures, such as suspension bridges, actually possess stochastic material properties and these random properties unavoidably affect the dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design variables has been established in this paper. Moreover, second order statistics of natural frequencies due to the randomness of material properties have been discussed. It is concluded from numerical analysis of a modem suspension bridge that although the second order statistics of frequencies are small relatively to the change of basic design variables, such as density of mass and modulus of elasticity, the sensitivities of modal parameters to these variables at different locations change in magnitude.

DEVELOPMENT OF CAVITATING FLOW ANALYSIS CODE (캐비테이팅 유동 해석 코드 개발)

  • Yang, Seung-Yong;Myong, Hyon-Kook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.122-126
    • /
    • 2010
  • The Rayleigh Plesset based cavitation model(Singhal et al., 2002) is reproduced through a pressure-based finite-volume numerical method using unstructured hexagonal mesh, which is developed by the author. In the process of reproduction, a mass conservation problem by the large density changes associated with phase change, which wasn't mentioned by them, has been exposed. One resolution about it is proposed and then cavitating flow characteristics around a hydrofoil (NACA66) for evaluation of the code are investigated. The computational results are verified by the comparison with the experimental results and show good agreements with them.

  • PDF

Optimum Design of Suspension in Loading Container on Trailer (컨테이너 상차 시 트레일러 현가장치의 최적설계)

  • Kim, Jae-Heon;Hong, Do-Kwan;Kim, Joong-Wan;Jeon, Un-Chan;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.710-715
    • /
    • 2001
  • This research is presented for optimizing the coefficients of spring and damper by impact load which is applied to a trailer when the containers are loaded up trailer. The procedure utilize the condition that two containers, initial velocity of container, initial height of container and maximum of suspension stroke. The coefficients of spring and damper are calculated numerically through Newmark method uses finite difference expansions. The procedure of calculation is applied by one DOFs of mass-spring-damper system. The coefficients of spring and damper have large value as increase of height or decrease of stroke. The result of calculation is investigated and is used AGV design.

  • PDF

Design of a New Flexible In-pipe Inspection Robot (새로운 구조의 유연한 배관탐사 로봇 설계)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Kim, Dong-Hyun;Lee, Jong-Hoon;Whang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.175-183
    • /
    • 2008
  • In this paper, a new in-pipe inspection robot was developed for inspecting a large number of circular pipe insides of the sea plant, ships, and buildings. A new pressure generation system was devised to inspect circular pipes with different diameters and to move up and down slant or perpendicular slopes inside of the pipe. Also, a design method was analyzed to decide the capacity of driving motor for the robot if the mass and maximum velocity of the robot are identified. According to the design specification, a robot was developed and was tested to verify the performance of the pressure generation system. For tests, a control system was developed.

Hybridal Analysis of High-Frequency Combustion Instability with Pressure-Coupled Combustion Response Model (압력섭동과 연관된 연소응답모델에 기초한 고주파 연소불안정의 이론-수치적 고찰)

  • 윤웅섭;이길용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.253-257
    • /
    • 2003
  • Theoretical-numerical analysis of wave instability is conducted with parametric response function model. Fluctuating instantaneous mass evaporation rate functionally coupled with pressure perturbations with phase lag is assumed to examine the validity of the method. With sufficiently large amplitude and less phase lag to perturbation, combustion response is resonant to pressure waves, unstable waves are amplified, and the system is driven to instability. Magnitude of response is a crucial instability parameter in the determination of a stability margins and makes a critical change of balancing conditions between the amplifying and damping acoustic energies. In the phase regime the unstable waves are amplified, whereas, the acoustic waves are attenuated in the out-of-phase regime. In the intermediate regime, no distinct tendency of unstable waves was determined.

  • PDF

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.