• Title/Summary/Keyword: large displacement analysis

Search Result 729, Processing Time 0.025 seconds

Displacement Charateristics of Caisson-Type Breakwater under Earthquake Loadings (지진하중을 받는 케이슨 방파제의 변위 특성분석)

  • Shin, Eun-Chul;Jeon, Jae-Ku;Lee, Joong-Hwa;Lee, Chung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1258-1270
    • /
    • 2009
  • Recently, the earthquakes activities are more of frequency occurred in the country. In case of nomal or large magnitude earthquakes, which cause a rising number of life loss or widespread loss of property. It must be considered how to cope with the situperty of dpmage in the country ty account of ay earthquake. Consequently, the public works have currently ensured against a lot of risk about seismism not only on large scale structures but also relatively small structures. Therefore, in this study, in order to make the seismic stability safe, it has been evaluated by the seismic performance for caisson-type breakwater. The seismic response analyses have conducted on the caisson-type breaker under long-period, short-period and artificial seismic wave. The liquefaction potential of the foundation, which is caisson-type, is also estimated by using the simplified assessment method. Finally, the result of the numerical analysis by PENTAGON 2D finite element method(FEM) program are presented for 3 cases with time-history seismic analysis under the seismic load.

  • PDF

Analysis on the Influence and Reinforcement Effect of Adjacent Pier Structures according to the Underpass Construction (지하차도 시공에 따른 인접 교각구조물 영향 및 보강효과 분석)

  • Lee, Donghyuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.29-39
    • /
    • 2022
  • In order to solve the serious traffic congestion in seoul metropolitan city, large-scale underground space development such as underpasses, deep underground roads, and GTX (Great Train eXpress) is being carried out. In order to minimize the impact of the adjacent seoul metro line A pier foundation and stability due to the construction of the underground road in Seoul, earth retaining structures were reinforced and the foundation was reinforced as well. In this study, three-dimensional finite element mehtod analysis was performed to evaluate the effect on adjacent construction and to review the stability of the underpass excavation work. The reinforcement effect was quantitatively analyzed through numerical analysis. As a result of the analysis, compared to the result of performing the existing reinforcement when overlapping CIP and ground reinforcement grouting were performed, the displacement of the earth retaining structures was reduced by more than 50%, and stress of the foundation piles were also reduced by more than 45%. Based on the analysis of the numerical analysis results, it was confirmed that the displacement of the walls of earth retaining structures during adjacent construction should be strictly controlled.

Experimental Analysis of Bounce, Roll and Pitch Frequencies of Major Systems of a Large Truck using a Multi-axial Road Simulator (다축 로드 시뮬레이터를 이용한 대형트럭 주요 시스템의 바운스와 롤 및 피치 주파수의 실험적 분석)

  • Moon, Il-Dong;Oh, Chae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.128-135
    • /
    • 2005
  • This paper presents a scheme for experimentally analyzing bounce, roll and pitch frequencies of major systems of a large truck using a multi-axial road simulator. The excitation input (amplitude and frequency range) fur a frequency response test with the multi-axial road simulator is selected in order that bounce, roll and pitch modes are not coupled each other, the excitation amplitude can be reproduced in a specified excitation frequency range, and tires do not lose contact with posters. Three accelerometers, one gyroscope and four displacement meters are used in the frequency response test using the multi-axial road simulator. The reliability of the presented bounce mode frequency response test scheme is validated by comparing the result from a test using the multi-axial road simulator with the result from a road driving test. The road driving test is performed with velocities of 20km/h and 30km/h, and in an unladen state. The vertical accelerations at the cab and the front axle are measured in the road driving test. The roll and pitch mode frequency response tests are also performed with the presented frequency response test scheme. Roll and pitch frequencies of major systems of a large truck that are hard to acquire from a road driving test are analyzed as well as bounce frequency.

Evaluation of responses of semi-rigid frames at target displacements predicted by the nonlinear static analysis

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datt, Tushar K.
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.399-415
    • /
    • 2020
  • Responses of semi-rigid frames having different degrees of semi-rigidity obtained by the nonlinear static analysis (NSA) are evaluated at specific target displacements by comparing them with those obtained by the nonlinear time-history analysis (NTHA) for scaled earthquakes. The peak ground accelerations (PGA) of the earthquakes are scaled such that the obtained peak top story displacements match with the target displacements. Three different types of earthquakes are considered, namely, far-field and near-field earthquakes with directivity and fling-step effects. In order to make the study a comprehensive one, three degrees of semi-rigidity (one fully rigid and the other two semi-rigid), and two frames having different heights are considered. An ensemble of five-time histories of ground motion is included in each type of earthquake. A large number of responses are considered in the study. They include the peak top-story displacement, maximum inter-story drift ratio, peak base shear, total number of plastic hinges, and square root of sum of the squares (SRSS) of the maximum plastic hinge rotations. Results of the study indicate that the nonlinear static analysis provides a fairly good estimate of the peak values of top-story displacements, inter-story drift ratio (for shorter frame), peak base shear and number of plastic hinges; however, the SRSS of maximum plastic hinge rotations in semi-rigid frames are considerably more in the nonlinear static analysis as compared to the nonlinear time history analysis.

Experimental study and FE analysis of tile roofs under simulated strong wind impact

  • Huang, Peng;Lin, Huatan;Hu, Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.75-87
    • /
    • 2018
  • A large number of low-rise buildings experienced serious roof covering failures under strong wind while few suffered structural damage. Clay and concrete tiles are two main kinds of roof covering. For the tile roof system, few researches were carried out based on Finite Element (FE) analysis due to the difficulty in the simulation of the interface between the tiles and the roof sheathing (the bonding materials, foam or mortar). In this paper, the FE analysis of a single clay or concrete tile with foam-set or mortar-set were built with the interface simulated by the equivalent nonlinear springs based on the mechanical uplift and displacement tests, and they were expanded into the whole roof. A detailed wind tunnel test was carried out at Tongji University to acquire the wind loads on these two kinds of roof tiles, and then the test data were fed into the FE analysis. For the purpose of validation and calibration, the results of FE analysis were compared with the full-scale performance ofthe tile roofs under simulated strong wind impact through one-of-a-kind Wall of Wind (WoW) apparatus at Florida International University. The results are consistent with the WoW test that the roof of concrete tiles with mortar-set provided the highest resistance, and the material defects or improper construction practices are the key factors to induce the roof tiles' failure. Meanwhile, the staggered setting of concrete tiles would help develop an interlocking mechanism between the tiles and increase their resistance.

Characteristics for Horizontal Displacement of Temporary Earth Retaining Wall on Marine Sediments (해성퇴적층 지반의 가시설토류벽 수평변위 특성에 관한 연구)

  • Kim, Younghun;Kim, Chanki;Choi, Sungyeol;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.37-45
    • /
    • 2010
  • In this study, the value of numerical analysis was compared to the measured value of horizontal displacement during construction. And also, the value was reviewed by comparing with numbers calculated by SUNEX program and EXCAV program. When comparing to suggested values of the maximum horizontal displacement in clayey layer, the displacement caused by the IPS system is larger than one by the Strut girder type system. When comparing the result of SUNEX program to that of EXCAV program, the SUNEX program interprets larger value. It could be concluded the result of SUNEX program is closer to the suggested value, 0.5%H, in clayey layer. The result also shows that the internal friction angle(${\Phi}$) is the key factor of developing horizontal displacement rather than type of supporting systems or materials. That means small horizontal displacement occurs in sandy layer having large value of the internal friction angle, whereas vice versa in clayey layer having small value of the internal friction angle. Therefore, the result of EXCAV program is larger in sandy layer and vice versa in clayey layer. When comparing the measured result during construction to the value of 0.5%H, the measured result is 1.4 times greater than the value of 0.5%H. In contrast, the result of SUNEX program is only 78.1% of the value of 0.5%H and the one of EXCAV program is just 18.1% of that. This result shows the calculated value by SUNEX or EXCAV program is smaller than the observed value by measuring during construction. In result, more careful attention is needed to determine the behavior of the ground. To better analyze the behavior of the ground, more precise finite element method is required.

A Numerical Study of the Flame Cell Dynamics in Opposed Nonpremixed Tubular Configuration (비예혼합 튜브형상내 화염셀의 거동에 대한 수치 해석적 연구)

  • Park, Hyunsu;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.175-178
    • /
    • 2014
  • The flame cell dynamics in 2-D opposed nonpremixed tubular configuration was investigated using high-fidelity numerical simulations. The diffusive-thermal instability occurs as the $Damk{\ddot{o}}hler$ number, Da, approaches the 1-D extinction limit of the tubular flames and several flame cells are generated depending on Da, and flame radius. In general, the number of flame cells are found close to the largest wave number from the linear stability analysis. It was also found from the displacement speed analysis that during the local flame extinction and cell formation, negative edge flame speed is observed due to small gain from reaction compared to large loss from diffusion.

  • PDF

Development of Algorithm for Two Dimensional Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (II) - Nonlinear Analysis - (버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발 (II) -비선형 해석-)

  • Jeong, Sun-Wan;Kim, Seung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1926-1932
    • /
    • 2001
  • In this second part of the paper, the automatic mesh generation and remeshing algorithm using bubble packing method is applied to the nonlinear problem. The remeshing/refinement procedure is necessary in the large deformation process especially because the mesh distortion deteriorates the convergence and accuracy. To perform the nonliear analysis, the transfer of state variables such as displacement and strain is added to the algorithm of Part 1. The equilibrium equation based on total Lagrangian formulation and elasto-viscoplastic model is used. For the numerical experiment, the upsetting process including the contact constraint condition is analyzed by two refinement criteria. And from the result, it is addressed that the present algorithm can generate the refined meshes easily at the largely deformed area with high error.

A Study on the Strain Measuring of Structure Object (전자처리 및 Laser 간섭에 의한 구조물의 Strain측정에 관한 연구)

  • 김경석;최형철;양승필;정현철;김정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.267-272
    • /
    • 1993
  • This paper presents the performance and problems in analysis method and testing system of Electronic Speckle Pattern Interferometry (ESPI) method, in measuring two-dimensional in-plane displacement. The anyalysis result of measurement by ESPI is quite comparable to that of measurement by strain gauge method. This implieds that the method of ESPI is a very effective tool in non-contact two-dimensional in-planc strain analysis. But there is a controversal point,measurment error. This error is discussed to be affected not by ESPI method itseif, but by its analysis scheme of the interference fringe,where the first-order interpolation has been applied to the points of strain measured. In this case, it is turned out that the more errors would be occured in the large interval of fringe. so, this paper describes a computer method for drawing when the height is available only for some arbitary collection of points, the method is based on a distance-weighted, least-squares approximation technique, with the weight varying with the distance of the data points.

  • PDF

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.