• Title/Summary/Keyword: large deformation finite element simulation

Search Result 100, Processing Time 0.025 seconds

Finite Element Analysis of Piezocone Test II (피에조콘 시험의 유한요소 해석 II)

  • 김대규;김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.191-199
    • /
    • 2000
  • In this research, the finite element analysis of piezocone penetration and dissipation tests has been conducted using the anisotropic elastoplastic-viscoplastic bounding surface model, virtual work equation, and theory of mixtures formulated in the Up[dated Lagrangian reference frame for the large deformation and finite strain nature of piezocone penetration. The formulated equations have been implemented into a finite element program. The cone resistance, excess pore water pressure, and dissipation of excess pore water pressure from the finite element analysis have been compared and investigated. An effective simulation could be performed with the use of the anisotropic and viscous soil model. The finite element formulations and the results are described in part 'I' and part 'II' respectively.

  • PDF

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Hashimoto, Gaku;Ono, Kenji;Okuda, Hiroshi
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.287-318
    • /
    • 2012
  • We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.

Reaction force of ship stern bearing in hull large deformation based on stochastic theory

  • Zhang, Sheng-dong;Long, Zhi-lin;Yang, Xiu-ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.723-732
    • /
    • 2020
  • A theoretical calculation model for ship stern bearings with large hull deformation is established and validated theoretically and experimentally. A hull simulation model is established to calculate hull deformations corresponding to the reaction force of stern bearings under multi-factor and multi-operating conditions. The results show that in the condition of wave load, hull deformation shows randomness; the aft stern tube bearing load obeys the Gaussian distribution and its value increases significantly compared with the load under static, and the probability of aft stern tube bearing load greater than 1 is 65.7%. The influence laws and levels between hull deformation and bearing reaction force are revealed, and suggestions for ship stern bearing specifications are proffered accordingly.

A Dynamic Behavior of Rubber Component with Large Deformation (대변형을 하는 고무 부품의 동적 거동)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.536-541
    • /
    • 2005
  • Large displacement and rigidity about rubber component are expected by nonlinear and large deformation analysis in this study. Rubber is also used by the model of Mooney-Rivlin and the self contact between rubbers is established. There is the friction between rigid body and rubber, wall and floor. The nonlinear simulation analysis used in this study is expected to be widely applied in design, analysis and development of several rubber components which are used in automotive, railroad, and mechanical elements etc. By utilizing this method, time and cost can also be saved in developing new rubber product. The analysis of rubber components requires special material modeling and non-linear finite element analysis tools that are quite different from those used for metallic parts. The objective of this study is to analyze the rubber component with large deformation and non-linear properties.

  • PDF

Thermomechanical analysis of the tensile test: simulation and experimental validation

  • Celentano, Diego J.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.591-614
    • /
    • 2002
  • This paper presents experimental and numerical analyses of the thermomechanical behaviour that takes place in SAE1020 mild steel cylindrical specimens during the conventional tensile test. A set of experiments has been carried out in order to obtain the stress-strain curve and the diameter evolution at the neck which allow, in turn, to derive the elastic and hardening parameters characterizing the material response. Temperature evolutions have also been measured for a high strain rate situation. Moreover, a finite element large strain thermoelastoplasticity-based formulation is proposed and used to simulate the deformation process during the whole test. Some important aspects of this formulation are discussed. Finally, the results provided by the simulation are experimentally validated.

Analysis of impact response and damage in laminated composite cylindrical shells undergoing large deformations

  • Kumar, Surendra
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.349-364
    • /
    • 2010
  • The impact behaviour and the impact-induced damage in laminated composite cylindrical shell subjected to transverse impact by a foreign object are studied using three-dimensional non-linear transient dynamic finite element formulation. A layered version of 20 noded hexahedral element incorporating geometrical non-linearity is developed based on total Langragian approach. Non-linear system of equations resulting from non-linear strain displacement relation and non-linear contact loading are solved using Newton-Raphson incremental-iterative method. Some example problems of graphite/epoxy cylindrical shell panels are considered with variation of impactor and laminate parameters and influence of geometrical non-linear effect on the impact response and the resulting damage is investigated.

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei;Xiang, Tianyu;Zhao, Renda;Zhan, Yulin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.315-333
    • /
    • 2010
  • The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.

Investigation of rotation and shear behaviours of complex steel spherical hinged bearings subject to axial tensile load

  • Shi, Kairong;Pan, Wenzhi;Jiang, Zhengrong;Lv, Junfeng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Steel spherical hinged bearings have high loading capacity, reliable load transfer, flexible rotation with universal hinge and allowance of large displacement and rotation angle. However, bearings are in complex forced states subject to various load combinations, which lead to the significant influence on integral structural safety. Taking the large-tonnage complex steel spherical hinged bearings of Terminal 2 of Guangzhou Baiyun International Airport as an example, full-scale rotation and shear behaviour tests of the bearings subject to axial tensile load are carried out, and the corresponding finite element simulation analyses are conducted. The results of experiments and finite element simulations are in good agreement with the coincident development tendency of stress and deformation. In addition, the measured rotational moment is less than the calculated moment prescriptive by the code, and the relationship between horizontal displacement and horizontal shear force is linear. Finally, based on these results, the rotation and shear stiffness models of bearings subject to axial tensile load are proposed for the refinement analysis of integral structure.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.