• Title/Summary/Keyword: large deflections

Search Result 131, Processing Time 0.025 seconds

Vibration-based structural health monitoring of stay cables by microwave remote sensing

  • Gentile, Carmelo;Cabboi, Alessandro
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • Microwave remote sensing is probably the most recent experimental technique suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are presented and discussed. Subsequently, the paper addresses the application of the radar technology to the measurement of the vibration response on the stay cables of two cable-stayed bridges. The dynamic tests were performed in operational conditions (i.e. with the excitation being mainly provided by micro-tremors, wind and traffic) and the maximum deflections of the cables were generally lower than 5.0 mm. The investigation clearly highlights: (a) the safe and simple use of the radar on site and its effectiveness to simultaneously measure the dynamic response of all the stay cables of an array; (b) the negligible effects of the typical issues and uncertainties that might affect the radar measurements; (c) the accuracy of the results provided by the microwave remote sensing in terms of natural frequencies and tension forces of the stay cables; (d) the suitability of microwave interferometry to the repeated application within Structural Health Monitoring programmes.

Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors

  • Ramnavas, M.P.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.437-447
    • /
    • 2017
  • Explicit expressions for rapid prediction of inelastic design quantities (considering cracking of concrete) from corresponding elastic quantities, are presented for multi-storey composite frames (with steel columns and steel-concrete composite beams) subjected to service load. These expressions have been developed from weights and biases of the trained neural networks considering concrete stress, relative stiffness of beams and columns including effects of cracking in the floors below and above. Large amount of data sets required for training of neural networks have been generated using an analytical-numerical procedure developed by the authors. The neural networks have been developed for moments and deflections, for first floor, intermediate floors (second floor to ante-penultimate floor), penultimate floor and topmost floor. In the case of moments, expressions have been proposed for exterior end of exterior beam, interior end of exterior beam and both interior ends of interior beams, for each type of floor with a total of twelve expressions. Similarly, in the case of deflections, expressions have been proposed for exterior beam and interior beam of each type of floor with a total of eight expressions. The proposed expressions have been verified by comparison of the results with those obtained from the analytical-numerical procedure. This methodology helps to obtain the inelastic design quantities from the elastic quantities with simple calculations and thus would be very useful in preliminary design.

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges

  • Lonetti, Paolo;Pascuzzo, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.847-866
    • /
    • 2014
  • This paper describes a formulation to predict optimum post-tensioning forces and cable dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to both dead and live load configurations, taking into account design constrains concerning serviceability and ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, under live loads, for each cable elements, the lowest required cross-section area is determined, which verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by using a refined formulation of the bridge components, taking into account of geometric nonlinearities involved in the bridge components. The results demonstrate that the proposed method can be easily utilized to predict the cable dimensioning also in the framework of long span bridge structures, in which typically more complexities are expected in view of the large number of variables involved in the design analysis.

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

Studies on Evaluation for Long-Term Structural Performance of Pinus densiflora Sieb. et Zucc. (I) -Shear Creep and Mechano-Sorptive Behavior of Drift Pin Jointed Lumber-

  • Hong, Soon-Il;Park, Jun-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.11-18
    • /
    • 2006
  • This study was carried out to evaluate the mechano-sorptive deflection of shear creep of drift pin jointed solid wood. Specimens were the solid wood of Pinus densiflora. The joint was composed with steel plate and drift pin, 85mm in length and 10mm in diameter. The creep tests were conducted under the constant loads in an variable environment. Five different shearing loads were applied parallel to the grain of specimens. The shearing loads applied were 170, 340, 510, 680 and 850 kgf. The stress levels were 10, 20, and 30, 40 and 50% of the bearing strength obtained from the tension-type lateral strength test. The creep tests for specimens were carried out for 10300 hours. A few general conclusions could be drawn from this study: The mechano-sorptive deflection (${\delta}$ ms) is defined as ${\delta}\;ms={\delta}\;t-({\delta}\;c+{\delta}\;sh)-{\delta}\;o$, where ${\delta}$ t is the total deflection, ${\delta}$ c is the pure creep, ${\delta}$ sh is shrinkage-swelling behavior, and ${\delta}$ o is the initial deflection. Changes of relative humidity may cause more severe creep deflection than those of constant humidity, especially during the drying process. The mechano-sorptive behaviors of specimens, except the effects of shrinkage and swelling, gradually increased with increasing time. The deflection is increased in desorption process and recovered in adsorption process. The deflections of drift pin jointed solid wood under different loads showed almost same tendency in all specimens. Although the creep deflection tendencies of each series are very similar, the specimens subjected to a large shearing load exhibit large creep deflections in the desorption process than do those to the small shearing load specimens.

Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.869-886
    • /
    • 2013
  • This work presents an experimental methodology specially developed for the nonlinear large-amplitude free vibration analysis of a clamped-free thin-walled metal column under self-weight. The main contribution of this paper is related to the developed experimental methodology which is based on a remote sensing technique using a computer vision system that integrates, on-line, the digital image acquisition and its treatment through special image processing routines. The main importance of this methodology is that it performs large deflections measurements without making contact with the structure and thus, not introducing undesirable changes in its behavior, for instance, appreciable changes in mass and stiffness properties. This structure presents, in most cases, highly non-linear responses, which cannot be reproduced by conventional finite-element softwares due, mainly, to the simultaneous influence of geometric and inertial non-linearities. To capture the non-linearities associated with large amplitude vibration and be able to describe the buckling process, the structure is discretized as a sequence of jointed coupled elastic pendulums. The obtained numerical results are favorably compared with the experimental ones, in the pre- and post-buckling regimes.

Nonlinear Finite Element Analysis of Composite Shell Under Impact

  • Cho, Chong-Du;Zhao, Gui-Ping;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.666-674
    • /
    • 2000
  • Large deflection dynamic responses of laminated composite cylindrical shells under impact are analyzed by the geometrically nonlinear finite element method based on a generalized Sander's shell theory with the first order transverse shear deformation and the von-Karman large deflection assumption. A modified indentation law with inelastic indentation is employed for the contact force. The nonlinear finite element equations of motion of shell and an impactor along with the contact laws are solved numerically using Newmark's time marching integration scheme in conjunction with Akay type successive iteration in each step. The ply failure region of the laminated shell is estimated using the Tsai- Wu quadratic interaction criteria. Numerical results, including the contact force histories, deflections and strains are presented and compared with the ones by linear analysis. The effect of the radius of curvature on the composite shell behaviors is investigated and discussed.

  • PDF

Aeroelastic Characteri stics of Rotor Blades with Trailing Edge Flaps

  • Lim, In-Gyu;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • The aeroelastic analysis of rotor blades with trailing edge flaps, focused on reducing vibration while minimizing control effort, are investigated using large deflection-type beam theory in forward flight. The rotor blade aerodynamic forces are calculated using two-dimensional quasi-steady strip theory. For the analysis of forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The objective function, which includes vibratory hub loads and active flap control inputs, is minimized by an optimal control process. Numerical simulations are performed for the steady-state forward flight of various advance ratios. Also, numerical results of the steady blade and flap deflections, and the vibratory hub loads are presented for various advance ratios and are compared with the previously published analysis results obtained from modal analysis based on a moderate deflection-type beam theory.

Axiomatic Design of Composite Double Arm Type Robot Hands and Wrists for Handling Large Glass Panel Displays (공리 설계를 적용한 대형 평판 디스플레이용 더블암형 복합재료 로봇 핸드 및 리스트)

  • 이창섭;이대길;최진경
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.241-244
    • /
    • 2002
  • Recently, the size of glass panel is increased to $1250 mm{\times}1100 mm{\times}0.7 mm$, whose mass is 2.65 kg, which requires much stiffer robot structure. In addition to the high stiffness, the robot hands and wrists for glass panel handling should have miller surface finishing of its outer surface to prevent particles and dusts from adhering on the surface. The maximum height of the robot structure should not be larger than 1500 mm because other automated guided vehicles (AGV) and transfer equipments have been designed within this size limit. The difference of maximum deflections of the four ends of the hands before and after loading the glass panel should be less than 2.0 mm. In this work, the robot hands and wrists for handling large glass panel displays were designed based on the axiomatic design using the finite element method along with optimization routine.

  • PDF