• Title/Summary/Keyword: large deflections

Search Result 132, Processing Time 0.025 seconds

A Study on the Efficient Flexible Multibody Dynamics Modeling of Deep Seabed Integrated Mining System with Subsystem Synthesis Method (부분시스템 합성방법을 이용한 심해저 통합 채광시스템의 효율적인 유연 다물체 동역학 모델링 연구)

  • Yun, Hong-Seon;Kim, Sung-Soo;Lee, Chang Ho;Kim, Hyung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1213-1220
    • /
    • 2015
  • A deep seabed integrated mining system consists of a mining vessel, a lifting pipe, a buffer station, a flexible pipe, and a mining robot for collecting manganese nodules. Recently, the concept of multiple mining robots was introduced to enhance to mining productivity. In this paper, the subsystem synthesis method was applied to the deep seabed integrated mining system in order to improve the efficiency of system analysis and to facilitate its extension to the system of multiple mining robots. Large deflections of the lifting and flexible pipe were considered by dividing a flexible pipe into several substructures, and applying flexible multibody dynamics to each substructure. Theoretical study has been carried out for the efficiency of the subsystem synthesis method for the integrated mining system, by comparing the arithmetic operational counts of the subsystem synthesis method with those of the conventional method.

Fracture Behavior of Dowel Joint of Concrete Slab Track (콘크리트궤도 슬래브의 다웰 연결부 파괴 거동)

  • Kwon, Kusung;Jang, Seung Yup;Chung, Wonseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2125-2133
    • /
    • 2013
  • Recently, an interest on joint behavior between adjacent concrete slab tracks has increasing due to large application of such track system. Dowel bars are widely used to improve load transfer capacity across the joints. Dowel bars reduce the deflections and stresses by transferring the load between the slabs. This study proposes the lumped shear spring model to efficiently model dowel joints of adjacent slabs. This model includes bearing stiffness between dowel bar and concrete as well as dowel gap. Strength of the proposed spring model is evaluated based on Concrete Capacity Design method under the assumption of shear failure mode in the joints. Experiments are also performed up to failure to evaluate the accuracy of the proposed model. It has been observed that the proposed model is able to predict initial nonlinearity due to dowel gap, and capture material nonlinearity of the test slabs. Thus, it is recommended that the proposed model can be effectively applied to the dowel joints of concrete slab track.

Assessment of Structural Modeling Refinements on Aeroelastic Stability of Composite Hingeless Rotor Blades (구조 모델링 특성에 따른 복합재료 무힌지 로터의 공력 탄성학적 안정성 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • The aeroelastic stability analysis of a soft-in-plane, composite hingeless rotor blade in hover and in forward flight has been performed by combining the mixed beam method and the aeroelastic analysis system that is based on a moderate deflection beam approach. The aerodynamic forces and moments acting on the blade are obtained using the Leishman-Beddoes unsteady aerodynamic model. Hamilton's principle is used to derive the governing equations of composite helicopter blades undergoing extension, lag and flap bending, and torsion deflections. The influence of key structural modeling issues on the aeroelastic stability behavior of helicopter blades is studied. The issues include the shell wall thickness, elastic couplings and the correct treatment of constitutive assumptions in the section wall of the blade. It is found that the structural modeling effects are largely dependent on the layup geometries adopted in the section of the blade and these affect on the stability behavior in a large scale.

Flexural Behavior of RC Beams Using High-Strength Reinforcement for Ductility Assessment (고강도 철근을 활용한 휨 부재의 연성거동에 관한 연구)

  • Kwon, Soon-Beom;Yoon, Young-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.119-126
    • /
    • 2002
  • This paper presents the appropriateness for using high strength reinforcement according to the use of high strength concrete. Nine flexural tests were conducted on full-scale beam specimens according to the concrete strength, reinforcement strength and reinforcement ratio as main variable. The structural behavior was analyzed due to the flexural strength, stress-strain curve, deflections at yielding and fracture point, crack appearance and ductility factor. The member with high-strength reinforcements showed large deflection at yielding point and this was analyzed as a main cause to decrease the ductility factor. Structural behavior after yielding point, however, showed similarity to behavior of members with normal strength reinforcements of same stiffness. It was found that in the case of using reinforcements of $5500kgf/cm^2$ strength, the combination with concrete of $800kgf/cm^2$ strength demonstrated the great appropriateness which can increase the flexural capacity without any reduction of maximum reinforcement ratio.

Deflection of Ultra-high Energy Cosmic Rays by the Galactic Magnetic Field

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2014
  • We investigate the influence of the galactic magnetic field (GMF) on the arrival direction (AD) of ultra-high energy cosmic rays (UHECRs) by searching the correlation with the large-scale structure (LSS) of the universe. The deflection angle of UHECRs from sources by the GMF is reflected in a source model by introducing the Gaussian smearing angle as a free parameter. Assuming the deflections by the GMF are mainly dependent on the galactic latitude, b, we divide the regions of sky by b and analyze the correlation between the AD of UHECRs and the LSS of the universe in each region varying the smearing angle. We find the deflection is strongly dependent on the galactic latitude by the maximum likelihood estimation. Specifically, the best-fit smearing angles are $9^{\circ}$ and $84^{\circ}$ in the high galactic latitude (HGL), $-90^{\circ}$ < b < $-60^{\circ}$, and in the low galactic latitude (LGL), $-30^{\circ}$ < b < $30^{\circ}$, respectively. The strength of GMF becomes stronger from the HGL to the LGL. From the results, we can estimate the strength of GMF in each region. In the LGL, for example, if we assume UHECRs are protons, we have the order of $100{\mu}G$ GMF, which is much stronger than the expected value of conventional GMF model. However, if the primaries are heavy nuclei, which is consistent with the observational result of mass composition analysis, the order of GMF strength is a few ${\mu}G$. More data from the future experiments make it possible to study the GMF between the source of UHECRs and Earth more accurately.

  • PDF

Behavior of stiffened and unstiffened CFT under concentric loading, An experimental study

  • Deifalla, Ahmed F.;Fattouh, Fattouh M.;Fawzy, Mona M.;Hussein, Ibrahim S.
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.793-803
    • /
    • 2019
  • Concrete-filled steel tubular (CFST) beam-columns are widely used owing to their good performance. They have high strength, ductility, large energy absorption capacity and low costs. Externally stiffened CFST beam-columns are not used widely due to insufficient design equations that consider all parameters affecting their behavior. Therefore, effect of various parameters (global, local slenderness ratio and adding hoop stiffeners) on the behavior of CFST columns is studied. An experimental study that includes twenty seven specimens is conducted to determine the effect of those parameters. Load capacities, vertical deflections, vertical strains and horizontal strains are all recorded for every specimen. Ratio between outer diameter (D) of pipes and thickness (t) is chosen to avoid local buckling according to different limits set by codes for the maximum D/t ratio. The study includes two loading methods on composite sections: steel only and steel with concrete. The case of loading on steel only, occurs in the connection zone, while the other load case occurs in steel beam connecting externally with the steel column wall. Two failure mechanisms of CFST columns are observed: yielding and global buckling. At early loading stages, steel wall in composite specimens dilated more than concrete so no full bond was achieved which weakened strength and stiffness of specimens. Adding stiffeners to the specimens increases the ultimate load by up to 25% due to redistribution of stresses between stiffener and steel column wall. Finally, design equations previously prepared are verified and found to be only applicable for medium and long columns.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.

Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation (고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.201-209
    • /
    • 1998
  • The presence of elevated temperature can alter significantly the structural response of fibre-reinforced laminated composites. A thermal environment causes degradation in both strength and constitutive properties, particularly in the case of fibre-reinforced polymeric composites. Furthermore, associated thermal expansion, either alone or in combination with mechanically induced deformation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is often imperative to consider environmental effects in the analysis and design of laminated systems. Exact analytical solutions of higher-order shear deformation theory is developed to study the thermal buckling of cross-ply and antisymmetric angle-ply rectangular plates. The buckling behavior of moderately thick cross-ply and antisymmetric angle-ply laminates that are simply supported and subject to a uniform temperature rise is analyzed. Numerical results are presented for fiber-reinforced laminates and show the effects of ply orientation, number of layers, plate thickness, and aspects ratio on the critical buckling temperature and compared with those obtained using the classical and first-order shear deformation theory.

  • PDF

Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model (동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석)

  • Lee, Joon-Bae;Yoo, Seung-Jae;Jeong, Min-Soo;Lee, In;Kim, Deog-Kwan;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.297-305
    • /
    • 2011
  • In this study, the aeroelastic analysis of rotorcraft in forward flight has been performed using dynamic inflow model to handle unsteady aerodynamics. The quasi-steady airload model based on the blade element method has been coupled with dynamic inflow model developed by Peters and He. The nonlinear steady response to periodic motion is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim for stability analysis. The aerodynamic and structural characteristics of dynamic inflow model are validated against other numerical analysis results by comparing induced inflow and blade tip deflections(flap, lag). In order to validate aeroelastic stability of dynamic inflow model, lag damping are also compared with those of linear inflow model.