• Title/Summary/Keyword: large dams

Search Result 171, Processing Time 0.014 seconds

Grouting Improvement through Correlation Analysis of Hydrogeology and Discontinuity Factors in a Jointed Rock-Mass (절리 암반의 수리지질 및 불연속면 특성 간 상관분석을 통한 그라우팅 계획 수립의 개선 방안)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.279-294
    • /
    • 2024
  • Large-scale civil engineering structures such as dams require a systematic approach to jointed rock-mass grouting to prevent water leakage into the foundations and to ensure safe operation. In South Korea, rock grouting design often relies on the experience of field engineers that was gained in similar projects, highlighting the need for a more systematic and reliable approach. Rock-mass grouting is affected mainly by hydrogeology and the presence of discontinuities, involving factors such as the rock quality designation (RQD), joint spacing (Js), Lugeon value (Lu), and secondary permeability index (SPI). This study, based on data from field investigations of 14 domestic sites, analyzed the correlation between hydrogeological factors (Lu and SPI), discontinuity characteristics (RQD and Js), and grout take, and systematically established a design method for rock grouting. Analysis of correlation between the variables RQD, Js, Lu, and SPI yielded Pearson correlation (r) values as follows: Lu-SPI, 0.92; RQD-Lu, -0.75; RQD-Js, 0.69; RQD-SPI, -0.65; Js-Lu, -0.47; and SPI-Js, -0.41. The grout take increases with Lu and SPI values, but there is no significant correlation between RQD and Js. The proposed approach for grouting design based on SPI values was verified through analysis and comparison with actual curtain-grouting construction, and is expected to be useful in practical applications and future studies.