• Title/Summary/Keyword: large area synthesis

Search Result 168, Processing Time 0.031 seconds

Growth of Carbon Nanotubes by Microwave Plasma Enhanced Chemical Vapor Deposition (마이크로웨이브 플라즈마 화학기상증착법에 의한 탄소나노튜브의 성장특성)

  • Choi Sung-Hun;Lee Jae-Hyeoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.501-506
    • /
    • 2006
  • Carbon nanotubes (CNTs) were grown with a microwave plasma enhanced chemical vapor deposition (MPECVD) method, which has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the low temperature and the large area growth. MPECVD used methane ($CH_4$) and hydrogen ($H_2$) gas for the growth of CNTs. 10 nm thick Ni catalytic layer were deposited on the Ti coated Si substrate by RF magnetron sputtering method. In this work, the pretreatment was that the Ni catalytic layer in different microwave power (600, 700, and 800 W). After that, CNTs deposited on different pressures (8, 12, 16, and 24 Torr) and grown same microwave power (800 W). SEM (Scanning electron microscopy) images showed Ni catalytic layer diameter and density variations were dependent with their pretreatment conditions. Raman spectroscopy of CNTs shows that $I_D/I_G$ ratios and G-peak positions vary with pretreatment conditions.

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Li, Lingwei;Xue, Shaolin;Xie, Pei;Feng, Hange;Hou, Xin;Liu, Zhiyuan;Xu, Zhuoting;Zou, Rujia
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.739-748
    • /
    • 2018
  • ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.

Recent Advances in Electrodeposition Technology (전해 석출 기술의 최근 개발 동향)

  • Kim, S.K.;Reddy, R.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.553-567
    • /
    • 2001
  • Electrodeposition technology is widely used in industry for various kinds of coatings. Modifications in this technology led to several processes to meet various requirements. Electrolysis in ionic liquids has many advantages such as low energy consumption of energy, low pollutant emission and low operating costs. Although ionic liquids have already been used in liquid/liquid extraction processes, only recently their use in electrodeposition was exploited. Electrochemical deposition of composites is an expanding area. Coupled with the progress in the synthesis of nanometric powder, this research will open a large number of innovative materials. Pulse current plating is another electrodeposition technique which yields improved coatings. Although electrodeposition is now regarded as an environmental non-friendly process, it is economically viable and has many inherent advantages. For certain applications, alternatives to electrodeposition have not yet been fully implemented. Hence, continued research in this technology is warranted. This article reviews some recent advances in electrodeposition technology. Aspects of electrodeposition such as electrolysis in ionic liquids, electrodeposition of composites, pulse current plating techniques, metal and alloy deposition, compound deposition and effects of additives are discussed in this review.

  • PDF

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

WS2 Nanoparticles Embedded in Carbon Nanofibers for a Pseudocapacitor (의사 커패시터를 위한 WS2 나노입자가 내제된 탄소나노섬유)

  • Sung, Ki-Wook;Lee, Jung Soo;Lee, Tae-Kum;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.458-464
    • /
    • 2021
  • Tungsten disulfide (WS2), a typical 2D layerd structure, has received much attention as a pseudocapacitive material because of its high theoretical specific capacity and excellent ion diffusion kinetics. However, WS2 has critical limits such as poor long-term cycling stability owing to its large volume expansion during cycling and low electrical conductivity. Therefore, to increase the high-rate performance and cycling stability for pseudocapacitors, well-dispersed WS2 nanoparticles embedded in carbon nanofibers (WS2-CNFs), including mesopores and S-doping, are prepared by hydrothermal synthesis and sulfurizaiton. These unique nanocomposite electrodes exhibit a high specific capacity (159.6 F g-1 at 10 mV s-1), excellent high-rate performance (81.3 F g-1 at 300 mV s-1), and long-term cycling stability (55.9 % after 1,000 cycles at 100 mV s-1). The increased specific capacity is attributed to well-dispersed WS2 nanoparticles embedded in CNFs that the enlarge active area; the increased high-rate performance is contributed by reduced ion diffusion pathway due to mesoporous CNFs and improved electrical conductivity due to S-doped CNFs; the long-term cycling stability is attributed to the CNFs matrix including WS2 nanoparticles, which effectively prevent large volume expansion.

Sopung-san Extract Enhances healing potential on Full-thickness Skin Wound in Rats: Role of VEGF and TGF-β1 (흰쥐의 전층피부상처 동물모델에서 소풍산(消風散)이 VEGF 및 TGF-β1발현에 미치는 영향)

  • Kim, Bum Hoi
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.123-134
    • /
    • 2017
  • Wounds are commonly created during almost every kind of surgery, trauma and skin diseases. Delayed wound healing affects a plenty of patients and requires prolonged treatments that seriously reduce the quality of life for patients. Skin damage involving large areas or great severity can lead to disability or even death. Wound healing involves a complicated series of actions, of various tissues and cell lineages, concerning inflammation, migration, proliferation, reepithelialization, and remodeling. Sopung-san is reported to have anti-inflammatory effect and has been used for various skin diseases such as allergic dermatitis and atopic dermatitis. In this study, the hypothesis that oral treatment with Sopung-san could enhances healing potential on rat full thickness skin wounds was tested. Twenty young male Sprague-Dawley rats were used for the studies. A full-thickness skin wound was made on the dorsal skin of the rats. Either Sopung-san water extract (SPS) or saline (Control) was orally administrated every day. The wound area was measured and the percentages of wound contraction, wound healed and wound epithelization were calculated. Wound tissue samples were excised following injection for histopathological and immunohistological examination. Wound area in rats of SPS group significantly was decreased compared to Control. SPS group showed significant promotion of wound healing compared to Cotrol group in the percentages of wound contraction, wound healed and wound epithelization. Histopathological examination revealed that SPS induces neo-vascularization potential in wound healing process. SPS treatment in rats significantly accelerated cutaneous wound healing in the neo-vascularization process by increasing VEGF and $TGF-{\beta}1$ synthesis. The results suggest that Sopung-san affects key cellular processes responsible for wound repair and point to a unique potential for this molecule in the therapy of skin wounds, particularly as an angiogenic agent.

High-Temperature Behavior of Ba-Doped Boehmite Hydrothermally Prepared from $Al(OH)_3$ and $Ba(OH)_2$

  • Fujiyohi, Kaichi;Ishida, Shingo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.379-385
    • /
    • 1999
  • Minute boehmite crystals with high aspect rations, which were hydrothermally synthesized from gibbsite in $Ba(OH)_2$ solution, occluded Ba with the Ba/Al molar ratio of about 0.03 in their interlayers. Their surface areas were about 14$\m^2$/g. The Ba-intercalated bohemite samples were partly used for producing $BaAl_{12}O){19}$ with low sinterability by externally supplementing $Ba(OH)_2$, and for forming transient aluminas. The surface area of $BaAl_{12}O){19}$ obtained by firing at $1500^{\circ}C$ for 3 h was 5.3$\m^2$/g, which was significantly lower than 12$\m^2$/g of the sol-gel origin. While a mixture ${\gamma}$-alumina and BaO is known to from $BaAl_{12}O){19}$ at $1200^{\circ}C$, solid state reaction between η-alumina transformed from the Ba-intercalated boehmite and BaO formed from $Ba(OH)_2$ deposited on the boehmite started above $1300^{\circ}C$. This suggests that large sized $Ba^{2+}$ ion occluded in η-alumina considerably suppresses the diffusion of $Al^{3+}$ ion. The surface area of the Ba-intercalated boehmite fired at $1400^{\circ}C$ for 3h was as high as 14$\m^2$/g indicative of its potential applicability to combustion catalysts. But it was decreased to 5.0$\m^2$/g after firing at $1500^{\circ}C$ for 3 h, accompanied by abrupt formations of $\alpha$-alumina and $BaAl_{12}O){19}$ as main products. The suppression of $\alpha$-alumina formation up to $1400^{\circ}C$ also suggests the significant blocking effect of $Ba^{2+}$ ion on the diffusion of the component ions.

  • PDF

A Study on the application of appropriate level of illuminance to the Cathedral based on lighting principles (조명원리를 기반으로 한 성당조도의 적정수준 적용분석 연구)

  • Bahn, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.685-696
    • /
    • 2017
  • In the spatial image composition of a cathedral, light is the most important element of changing the mind through vision. The religious meaning of light and its impact on human sensibility are believed to be very large. Therefore, in this study, 'Illuminance' is the most important research subject of a cathedral's worship space lighting plan elements. Illuminance is expressed by giving the clarity and form of space through a subtle spatial composition difference. The role of illuminance is essential for confirming the existence of space, and lighting controls the spatial atmosphere at an appropriate level. The standard and range of illuminance are set through the synthesis and analysis of related standards. Based on this, a related case study was conducted on cathedrals built in the Gangnam area of Seoul in the 1980s. The lighting-related factors were analyzed and the illuminance of the liturgical space and worship area were measured. The appropriate level of applicability was confirmed by comparison analysis. A plan for the illuminance application levels and elements applied in the cathedral lighting design is proposed.

MWCNT, silver nanoparticles, CuBTC를 사용한 염소 이온 센서 합성

  • Gwak, Byeong-Gwan;Park, Su-Bin;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.101-101
    • /
    • 2018
  • Quantitative measurement of chloride ion concentration has an important role in various fields of electrochemistry, medical science, biology, metallurgy, architecture, etc. Among them, its importance of architecture is ever-growing due to unexpected degradations of building structure. These situations are caused by corrosion of reinforced concrete (RC) structure of buildings. And chloride ions are the most powerful factors of RC structure corrosion. Therefore, precise inspection of chloride ion concentration must be required to increase the accuracy of durability monitoring. Multi-walled Carbon nanotubes (MWCNTs) have high chemical resistivity, large surface area and superior electrical property. Thus, it is suitable for the channels of electrical signals made by the sensor. Silver nanoparticles were added to giving the sensing property. CuBTC, one of the metal organic frameworks (MOFs), was employed as a material to improve the sensing property because of its hydrophilicity and high surface area to volume ratio. In this study, sensing element was synthesized by various chemical reaction procedures. At first, MWCNTs were functionalized with a mixture of sulfuric acid and nitric acid because of enhancement of solubility in solution and surface activation. And functionalized MWCNTs, silver nanoparticles, and CuBTC were synthesized on PTFE membrane, one by one. Electroless deposition process was performed to deposit the silver nanoparticles. CuBTC was produced by room temperature synthesis. Surface morphology and composition analysis were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), respectively. X-ray photoelectron spectroscopy (XPS) was also performed to confirm the existence of sensing materials. The electrical properties of sensor were measured by semiconductor analyzer. The chloride ion sensing characteristics were confirmed with the variation of the resistance at 1 V.

  • PDF

Particle Characteristics of Flame-Synthesized γ-Al2O3 Nanoparticles (화염법으로 제조된 감마-Al2O3 나노입자의 화염조건에 따른 입자특성 연구)

  • Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.509-515
    • /
    • 2012
  • In this study, ${\gamma}-Al_2O_3$ nanoparticles were synthesized by using coflow hydrogen diffusion flames. The synthesis conditions were varied with using several oxygen concentrations in the oxidizing air. The particle characteristics of the flame-synthesized $Al_2O_3$ nanoparticles were determined by examining the crystalline structure, shape, and specific surface area of the nanoparticles. The measured maximum centerline temperature of the flames ranged from 1507.8 K to 1998.7 K. The morphology and crystal structure of the $Al_2O_3$ nanoparticles were determined from SEM images and XRD analyses, respectively. The particle sizes were calculated from measured BET specific surface areas and ranged from 25 nm to 52 nm. From XRD analyses, it was inferred that a large number of the synthesized nanoparticles were ${\gamma}-Al_2O_3$ nanoparticles including ${\theta}-Al_2O_3$ nanoparticles.