• Title/Summary/Keyword: lane detection

Search Result 351, Processing Time 0.023 seconds

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

A Study on a Lane Detection Using Eccentricity (Eccentricity를 이용한 차선 검출에 관한 연구)

  • Jeong, Tae-Il;Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2755-2761
    • /
    • 2012
  • In this paper, a lane detection algorithm using Eccentricity calculation is proposed. Lane detection is used for lane departure warning which can support safe driving to prevent accidents. In other to enhance the detection rate, we define the Eccentricity calculation which is introduced in graph theory, and evaluate the Eccentricity. The Eccentricity for any straight line is equal to 1, hence computing the Eccentricity allows the implementation of a first order equation. As a results of simulation, we confirmed that the proposed algorithm was enhanced by time and space complexity, and superior to the performance of the conventional lane detections.

A High Speed Road Lane Detection based on Optimal Extraction of ROI-LB (관심영역(ROI-LB)의 최적 추출에 의한 차선검출의 고속화)

  • Cheong, Cha-Keon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.253-264
    • /
    • 2009
  • This paper presents an algorithm, aims at practical applications, for the high speed processing and performance enhancement of lane detection base on vision processing system. As a preprocessing for high speed lane detection, the vanishing line estimation and the optimal extraction of region of interest for lane boundary (ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled. Image feature information is extracted only in the ROI-LB. Road lane is extracted using a non-parametric model fitting and Hough transform within the ROI-LB. With simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since outliers of edge at each block can be removed with clustering of edge orientation for each block within the ROI-LB, the performance of lane detection can be greatly improved. The various real road experimental results are presented to evaluate the effectiveness of the proposed method.

A Real Time Lane Detection Algorithm Using LRF for Autonomous Navigation of a Mobile Robot (LRF 를 이용한 이동로봇의 실시간 차선 인식 및 자율주행)

  • Kim, Hyun Woo;Hawng, Yo-Seup;Kim, Yun-Ki;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1029-1035
    • /
    • 2013
  • This paper proposes a real time lane detection algorithm using LRF (Laser Range Finder) for autonomous navigation of a mobile robot. There are many technologies for safety of the vehicles such as airbags, ABS, EPS etc. The real time lane detection is a fundamental requirement for an automobile system that utilizes outside information of automobiles. Representative methods of lane recognition are vision-based and LRF-based systems. By the vision-based system, recognition of environment for three dimensional space becomes excellent only in good conditions for capturing images. However there are so many unexpected barriers such as bad illumination, occlusions, and vibrations that the vision cannot be used for satisfying the fundamental requirement. In this paper, we introduce a three dimensional lane detection algorithm using LRF, which is very robust against the illumination. For the three dimensional lane detections, the laser reflection difference between the asphalt and lane according to the color and distance has been utilized with the extraction of feature points. Also a stable tracking algorithm is introduced empirically in this research. The performance of the proposed algorithm of lane detection and tracking has been verified through the real experiments.

A Study on a Lane Detection and Tracking Algorithm Using B-Snake (B-Snake를 이용한 차선 검출 및 추적 알고리즘에 관한 연구)

  • Kim, Deok-Rae;Moon, Ho-Sun;Kim, Yong-Deak
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.21-30
    • /
    • 2005
  • In this paper, we propose lane detection and trackinB algerian using B-Snake as robust algorithm. One of chief virtues of Lane detection algorithm using B-Snake is that it is possible to specify a wider range of lane structure because B-Spline conform an arbitrary shape by control point set and that it doesn't use any camera parameter. Using a robust algorithm called CHVEP, we find the vanishing point, width of lane and mid-line of lane because of the perspective parallel line and then we can detect the both side of lane mark using B-snake. To demonstrate that this algorithm is robust against noise, shadow and illumination variations in road image, we tested this algorithm about various image divided by weather-fine, rainy and cloudy day. The percentage of correct lane detection is over 95$\%$.

Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section (차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발)

  • Seo, Hotae;Park, Sungyoul;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.

Lane Detection and Tracking Algorithm for 3D Fluorescence Image Analysis (3D 형광이미지 분석을 위한 레인 검출 및 추적 알고리즘)

  • Lee, Bok Ju;Moon, Hyuck;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • A new lane detection algorithm is proposed for the analysis of DNA fingerprints from a polymerase chain reaction (PCR) gel electrophoresis image. Although several research results have been previously reported, it is still challenging to extract lanes precisely from images having abrupt background brightness difference and bent lanes. We propose an edge based algorithm for calculating the average lane width and lane cycle. Our method adopts sub-pixel algorithm for extracting rising-edges and falling edges precisely and estimates the lane width and cycle by using k-means clustering algorithm. To handle the curved lanes, we partition the gel image into small portions, and track the lane centers in each partitioned image. 32 gel images including 534 lanes are used to evaluate the performance of our method. Experimental results show that our method is robust to images having background difference and bent lanes without any preprocessing.

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

A study on the proceeding direction and obstacle detection by line edge extraction (직선 Edge 추출에 의한 주행방향 및 장애물 검출에 관한 연구)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.97-100
    • /
    • 1996
  • In this paper, we describe an algorithm which estimate road following direction using the vanishing point property and obstacle detection. This method of detecting the lane markers in a set of continuous lane highway images using linear approximation is presented. This algorithm is designed for accurate and robust extraction of this data as well as high processing speed. Also, this algorithm reckon distance and chase about an obstacle. It include four algorithms which are lane prediction, lane extraction, road following parameter estimation and obstacle detection algorithm. High accuracy was proven by quantitative evaluation using simulated images. Both robustness and the practicality of real time video rate processing were then confirmed through experiment using VTR real road images.

  • PDF

Detection of Lane Curve Direction by Using Image Processing Based on Neural Network (차선의 회전 방향 인식을 위한 신경회로망 응용 화상처리)

  • 박종웅;장경영;이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.178-185
    • /
    • 1999
  • Recently, Collision Warning System is developed to improve vehicle safety. This system chiefly uses radar. But the detected vehicle from radar must be decide whether it is the vehicle in the same lane of my vehicle or not. Therefore, Vision System is needed to detect traffic lane. As a preparative step, this study presents the development of algorithm to recognize traffic lane curve direction. That is, the Neural Network that can recognize traffic lane curve direction is constructed by using the information of short distance, middle distance, and decline of traffic lane. For this procedure, the relation between used information and traffic lane curve direction must be analyzed. As the result of application to sampled 2,000 frames, the rate of success is over 90%.t text here.

  • PDF