• Title/Summary/Keyword: lane detection

Search Result 351, Processing Time 0.028 seconds

A Study on the Detection Method of Lane Based on Deep Learning for Autonomous Driving (자율주행을 위한 딥러닝 기반의 차선 검출 방법에 관한 연구)

  • Park, Seung-Jun;Han, Sang-Yong;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.979-987
    • /
    • 2020
  • This study used the Deep Learning models used in previous studies, we selected the basic model. The selected model was selected as ZFNet among ZFNet, Googlenet and ResNet, and the object was detected using a ZFNet based FRCNN. In order to reduce the detection error rate of FRCNN, location of four types of objects detected inside the image was designed by SVM classifier and location-based filtering was applied. As simulation results, it showed similar performance to the lane marking classification method with conventional 경계 detection, with an average accuracy of about 88.8%. In addition, studies using the Linear-parabolic Model showed a processing speed of 165.65ms with a minimum resolution of 600 × 800, but in this study, the resolution was treated at about 33ms with an input resolution image of 1280 × 960, so it was possible to classify lane marking at a faster rate than the previous study by CNN-based End to End method.

Line Segment Detection Algorithm Using Improved PPHT (개선된 PPHT를 이용한 선분 인식 알고리즘)

  • Lee, Chanho;Moon, Ji-hyun;Nguyen, Duy Phuong
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • The detection rate of Progressive Probability Hough Transform(PPHT) is decreased when a lot of noise components exist due to an unclear or complex original image although it is quite a good algorithm that detects line segments accurately. In order to solve the problem, we propose an improved line detecting algorithm which is robust to noise components and recovers slightly damaged edges. The proposed algorithm is based on PPHT and traces a line segments by pixel and checks of it is straight. It increases the detection rate by reducing the effect of noise components and by recovering edge patterns within a limited pixel size. The proposed algorithm is applied to a lane detection method and the false positive detection rate is decreased by 30% and the line detection rate is increased by 15%.

Development of Automatic Incident Detection Algorithm Using Image Based Detectors (영상기반의 자동 유고검지 모형 개발)

  • 백용현;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.7-17
    • /
    • 2001
  • The purpose of this paper is to develop automatic incident detection algorithm using image based detector in freeway management system. This algorithm was developed by using neutral network for high speed roadway and by using speed and occupancy variable for low speed roadway. The image detector system with the developed automatic incident detection algorithm can detect multi-lane as well as several detect areas for each lane. To evaluate this system, field tests to measure the detecting rate of incidents were performed with other systems which have APID and DES algorithm at high speed roadway(freeway) and low speed roadway(national arterial). As the results of field test, it found that the detect rate of this system was highest rate comparing to other two systems.

  • PDF

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.

Robust Real-Time Lane Detection in Luminance Variation Using Morphological Processing (형태학적 처리를 이용한 밝기 변화에 강인한 실시간 차선 검출)

  • Kim, Kwan-Young;Kim, Mi-Rim;Kim, In-Kyu;Hwang, Seung-Jun;Beak, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1101-1108
    • /
    • 2012
  • In this paper, we proposed an algorithm for real-time lane detecting against luminance variation using morphological image processing and edge-based region segmentation. In order to apply the most appropriate threshold value, the adaptive threshold was used in every frame, and perspective transform was applied to correct image distortion. After that, we designated ROI for detecting the only lane and established standard to limit region of ROI. We compared performance about the accuracy and speed when we used morphological method and do not used. Experimental result showed that the proposed algorithm improved the accuracy to 98.8% of detection rate and speed of 36.72ms per frame with the morphological method.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

Design of 24 GHz Radar with Subspace-Based Digital Beam Forming for ACC Stop-and-Go System

  • Jeong, Seong-Hee;Oh, Jun-Nam;Lee, Kwae-Hi
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.827-830
    • /
    • 2010
  • For an adaptive cruise control (ACC) stop-and-go system in automotive applications, three radar sensors are needed because two 24 GHz short range radars are used for object detection in an adjacent lane, and one 77 GHz long-range radar is used for object detection in the center lane. In this letter, we propose a single sensor-based 24 GHz radar with a detection capability of up to 150 m and ${\pm}30^{\circ}$ for an ACC stop-and-go system. The developed radar is highly integrated with a high gain patch antenna, four channel receivers with GaAs RF ICs, and back-end processing board with subspace based digital beam forming algorithm.

Radar and Vision Sensor Fusion for Primary Vehicle Detection (레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발)

  • Yang, Seung-Han;Song, Bong-Sob;Um, Jae-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.

A Study on Development of Mobile Multi-lane Speed Enforcement System With a Laser Detector (레이저 검지기를 이용한 이동식 다차로 속도위반 알고리즘 연구)

  • Yoo, Sung Jun;Park, Jin Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.114-121
    • /
    • 2017
  • In order to overcome the limitations of the mobile speed system for 1 lane, this study is used a multi-laser beam to develop a mobile speed measuring system, using a multi-phase beam. By using multi-laser beam, least squares algorithms and speed error processing algorithms were developed to improve speed accordancy and speed error rates compared to conventional mobile speed meters using a single laser beam. A field test showed that 80.0 percent of 3 lane and 87.0 percent of 4 lane were appropriate for the mobile speed system. With the development of the mobile speed measuring system, it is expected to dramatically reduce the accidents caused by the speed of traffic. It is also expected to effectively operate equipment and manage the cost by improving manpower and providing improved enforcement accuracy, by contributing positively to public institution and public affairs.