• Title/Summary/Keyword: landuse

Search Result 348, Processing Time 0.034 seconds

Determination of the number of storm events monitoring considering urban stormwater runoff characteristics (도시지역의 강우유출수 특성 분석을 통한 적정모니터링 횟수 도출)

  • Choi, Jiyeon;Na, Eunhye;Kim, Hongtae;Kim, Jinsun;Kim, Yongseck;Lee, Jaekwan
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.515-522
    • /
    • 2017
  • This study investigated the runoff characteristics containing NPS pollutants in urban areas and estimated the optimal number of storm events to be monitored. 13 residential areas, 8 commercial areas, 9 transportation areas and 11 industrial areas were selected to be monitored located in urban areas. Monitoring was performed from 2008 to 2016 with a total of 632 rainfall events. As a result, it was found that commercial area needs priority NPS management compared to other landuses because the commercial area has high runoff coefficient and NPS pollutant EMC compared with other landuses. The annual monitoring frequency for each landuse was estimated to be 11 to 14 times for industrial area, 12 to 14 times for transportation area, 11 to 13 times for commercial area and 22 to 25 times for residential area. Even with the use of accumulated monitoring data for several years, there is still high probability of uncertainty due to high error in some pollutant items, and it is necessary to establish monitoring know-how and data accumulation to reduce errors by continuous monitoring.

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Frequency Runoff Analysis by Storm Type using GIS and NRCS Method (GIS와 NRCS방법을 이용한 호우형태에 따른 빈도별 유출 분석)

  • Yeon, Gyu-Bang;Jung, Seung-Kwon;Kim, Joo-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2003
  • Rainfall-runoff process is under the control of hydrologic parameters having temporal and spatial variety. Accordingly, it is difficult to efficiently deal them since many parameters and various information are required to perform hydrologic simulation. So the purposes of this study is to estimate the runoff volume by frequency using GIS techniques and NRCS method. The analysis of frequency rainfall is analyzed using FARD 2002 program and the result of goodness of fit test show that Log-pearson type III is suitable distribute type for the applied area. TOPAZ program used for the analysis of DEM data examining into geological characteristic. NRCS curve numbers estimated using landuse map and soil map for the estimation of effective rain fall in the basin. The storm Type II and Type III were used as the type for the application of NRCS. The result of application show that the runoff volumes above 80 years frequency in return period have similar patterns regardless of Type II and Type III. In addition, the results of comparison with runoff volumes by frequency in the report of river improvement master plan show that it have similar volumes as the relative errors for them of 80, 100 years frequency are each 7.65%, 5.33%.

  • PDF

Identification of Flooded Areas and Post-flooding Conditions: Developing Flood Damage Mitigation Strategies Using Satellite Radar Imagery (레이더 위성영상을 활용한 침수피해 지역 파악 및 완화방안 연구)

  • Lee, Moungjin;Myeong, Soojeong;Jeon, Seongwoo;Won, Joong-Sun
    • Journal of Environmental Policy
    • /
    • v.8 no.2
    • /
    • pp.1-23
    • /
    • 2009
  • This study applied satellite radar imagery to identify flooded areas and examined post-flooding conditions using time-series satellite radar imagery for the development of flood damage mitigation strategies. Using time-series satellite radar images, this study constructed a map delineating areas vulnerable to frequent flood damage. The extracted flooded areas were combined with reference land use maps to examine flood damage by land use type. Major landuse types with severe flood damage were agricultural and forested areas. The analysis of the damage conditions, in terms of land use, served as the basis for developing flood damage mitigation policies, in conjunction with land use planning. The policies for flood damage mitigation can be summarized as land use regulations, land use planning, and flood damage mapping. A preventive measure to minimize flood damage of properties, which regulates developing areas with high flooding potential, is highly recommended. Although this study suggested a number of policies for flood damage mitigation, they represent only a small number of possible policies useful for mitigating flood damage and other environmental problems. Based upon the results of this study, it may be concluded that satellite radar imagery has great potential in providing basic data for large-scale environmental problems such as flooding and oil spills. Nevertheless, further examinations should be conducted and the application of satellite radar imagery should be used to examine other environmental problems.

  • PDF

The Environmental Hazard Assessment of Siting Restricted Industries from Industrial Complex in Rural Area Applied by Chemical Ranking and Scoring System (화학적 등급화기법을 적용한 농공단지 입주제한업종의 환경유해성 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • The priorities of siting restriction was derived from quantification of environmental hazard according to industrial classification based on 'Chemical Ranking and Scoring System(CRS)' which is handling the discharge characteristics of 31 industrial classifications regulated from locating at 'Industrial Complex in Rural Area(ICRA)'. CRS that is utilizing the data of 'Pollutant Release and Transfer Registers(PRTR)' is applied to determine human health risk and ecological risk which are calculated by discharged amount and materials $LC_{50}$ according to water, soil and air media based on industrial classification. From this process, exposure assessment and toxicity assessment for integrating the adverse environmental impact and the mitigation effect of environmental risk according to the development of environmental technologies into establishing the rational landuse management method for the 31 industrial classifications regulated from locating at ICRA was analyzed. From the assessment result of the siting restriction removal at ICRA for 31 industrial classifications, based on 2012 year reference 6 industries that includes Manufacture of Guilt Coloration Surface Processing Steel Materials, Manufacture of Biological Product, Manufacture of Smelting Refining and Alloys of Copper, Dyeing and Finishing of Fibers and Yarns, Manufacture of Other Basic Iron and Steel n.e.c., Rolling Drawing and Extruding of Non-ferrous Metals n.e.c. are calculated as having relatively lower environmental hazards, thus it is judged that the siting restriction mitigation at ICRA is possible for the 6 industrial classifications that are not discharging the specific hazardous water contaminants during manufacturing process.

Evaluation on the Hydrologic Effects after Applying an Infiltration Trench and a Tree Box Filter as Low Impact Development (LID) Techniques (저영향 개발기법의 침투도랑과 나무여과상자 적용 후 수문학적 효과 평가)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Tobio, Jevelyn Ann S.;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • In this research, the hydrologic effects between a pre-existing urban landuse and low impact development (LID) applied conditions were compared and evaluated. The infiltration trench and tree box filter that were utilized in LID represent only 1% of the catchment area that they drain. Storm event monitoring were conducted from July 2010 to July 2014 on a total of 22 storm events in both LID sites. After LID, hydrological improvement was observed as the sites exhibited a delay (lag time) or reduction in the magnitude, frequency and duration of runoff and flow peaks as the rainfall progress. In addition, the maximum irreducible peak flow reduction for infiltration trench was found to be 61% and 33% for the tree box filter when rainfall was 40 mm and 30 mm, respectively. In designing LID, it is recommended to consider the storage capacity and catchment area, as well as the amount of rainfall and runoff on the site.

Integrated Strategy of National Geological Information System in Korea (국가 지질정보체계 구축전략 수립연구)

  • Hwang, Jae-Hong;Yeon, Young-Kwang;Lee, Hong-Jin;Han, Jong-Gyu;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.240-247
    • /
    • 2007
  • Geological information can be used for various purposes, such as the mine development, landuse, environmental protection, construction industry, and the development of water resource. Although geological information is highly useful for developing industrial raw materials, national land management and people's welfare, there is no unified public institution in charge of collecting and managing geological information at the national level. Thus, the government is to collect geological information, to construct database and to utilize and to distribute the information in a long-term and systematic way, the purpose of this study is to propose strategies for establishing an integrated geological information management system. In this study, we A) analyzed the current state and management of geological information in Korea and other countries; B) surveyed demand for geological information and analyzed correlations; C) drew up a conceptual diagram of the national integrated geological information management system; and D) developed strategies for establishing the national integrated geological information management system.

Characteristics of Non-Point Pollutants from Forest Landuse (산림 지역의 비점오염물질 유출 특성)

  • Kim, Ji-Yeon;Kim, Jee-Hyun;Jung, Min-Kyoung;Ji, Yong-Dea;Hwang, Jae-Yup;Park, Soo-Young;Yu, Jay-Jung;Kim, Tae-Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.287-287
    • /
    • 2011
  • 모니터링 자료의 부족으로 인하여 다양한 토지이용에서 발생하는 비점오염물질의 관리에 어려움을 겪고 있는 실정이다. 현재 환경부에서는 현행 토지계의 원단위를 세부적으로 분류하여 재산정하기 위하여 지목별로 장기 모니터링이 수행되고 있다. 특히, 산림 지역의 경우 도시 및 축산지역에 비하여 강우유출수의 농도는 낮더라도 유량적인 측면에 보았을 때 전체 수계에 대한 부하량 기여도는 매우 높다고 볼 수 있다. 따라서 본 연구는 장기모니터링의 일환으로 산림지역에 대한 비점오염물질 유출 특성을 파악하기 위하여 모니터링 및 분석을 실시하였으며, 이러한 결과는 향후 비점오염원 평가기반을 마련하고자 한다. 본 연구는 활엽수지역을 대상으로 2010년 4월부터 10월까지 총 16회에 걸쳐 모니터링이 수행되었으며, 시료의 성분 변화를 막기 위해 냉장기능이 있는 자동채수기를 이용하여 시료를 채취하였다. 수질분석항목은 BOD, COD, DOC, SS, T-N, $NO_3$-N, $NH_3$-N, T-P, $PO_4$-P로 총 9가지 항목을 분석하였다. 강우사상에 대한 모니터링 결과, 총강우량은 7.0~76.5mm, 강우지속시간은 1~30hr, 평균 강우강도는 0.88~18.50mm/hr의 범위를 보이고 있으며, EMC(Event Mean Concentration, 유량가중평균농도)결과 BOD는 0.4~2.4mg/L, T-N은 1.156~14.777mg/L, T-P는 0.009~0.562mg/L인 것으로 나타났으며, SS는 1.8~71.9mg/L 로 비교적 높은 값을 나타내는 것으로 분석되었다. 농도 변화 및 유출경향의 패턴을 볼 때, 유량이 증가함에 따라 농도도 점점 증가하여 첨두유량이 발생된 후 감소하는 경향을 나타내는 것으로 분석되었다. 또한 우리나라의 경우, 시험유역을 대개 산지 소유역에 설치하는 경우가 많아서 일반적으로 지연시간이 짧은 경우가 많기 때문에 이 지역 역시 강우가 내린 후 계류유출량의 증가에 영향을 주는 강우의 유출속도는 비교적 빠른 것으로 나타났다. 그리고 단기 수문곡선상에서 강우량이 많을 시 유출이 빠르게 일어나 첨두 유량에 도달하는 시간이 짧고, 강우량이 적을 시에는 첨두 유량의 출현시간이 늦어지는 것을 볼 수 있었다.

  • PDF

Analysis of large-scale flood inundation area using optimal topographic factors (지형학적 인자를 이용한 광역 홍수범람 위험지역 분석)

  • Lee, Kyoungsang;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.481-490
    • /
    • 2018
  • Recently, the spatiotemporal patterns of flood disasters have become more complex and unpredictable due to climate change. Flood hazard map including information on flood risk level has been widely used as an unstructured measure against flooding damages. In order to product a high-precision flood hazard map by combination of hydrologic and hydraulic modeling, huge digital information such as topography, geology, climate, landuse and various database related to social economic are required. However, in some areas, especially in developing countries, flood hazard mapping is difficult or impossible and its accuracy is insufficient because such data is lacking or inaccessible. Therefore, this study suggests a method to delineate large scale flood-prone area based on topographic factors produced by linear binary classifier and ROC (Receiver Operation Characteristics) using globally-available geographic data such as ASTER or SRTM. We applied the proposed methodology to five different countries: North Korea Bangladesh, Indonesia, Thailand and Myanmar. The results show that model performances on flood area detection ranges from 38% (Bangladesh) to 78% (Thailand). The flood-prone area detection based on the topographical factors has a great advantage in order to easily distinguish the large-scale inundation-potent area using only digital elevation model (DEM) for ungauged watersheds.

Comparison of physics-based and data-driven models for streamflow simulation of the Mekong river (메콩강 유출모의를 위한 물리적 및 데이터 기반 모형의 비교·분석)

  • Lee, Giha;Jung, Sungho;Lee, Daeeop
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.503-514
    • /
    • 2018
  • In recent, the hydrological regime of the Mekong river is changing drastically due to climate change and haphazard watershed development including dam construction. Information of hydrologic feature like streamflow of the Mekong river are required for water disaster prevention and sustainable water resources development in the river sharing countries. In this study, runoff simulations at the Kratie station of the lower Mekong river are performed using SWAT (Soil and Water Assessment Tool), a physics-based hydrologic model, and LSTM (Long Short-Term Memory), a data-driven deep learning algorithm. The SWAT model was set up based on globally-available database (topography: HydroSHED, landuse: GLCF-MODIS, soil: FAO-Soil map, rainfall: APHRODITE, etc) and then simulated daily discharge from 2003 to 2007. The LSTM was built using deep learning open-source library TensorFlow and the deep-layer neural networks of the LSTM were trained based merely on daily water level data of 10 upper stations of the Kratie during two periods: 2000~2002 and 2008~2014. Then, LSTM simulated daily discharge for 2003~2007 as in SWAT model. The simulation results show that Nash-Sutcliffe Efficiency (NSE) of each model were calculated at 0.9(SWAT) and 0.99(LSTM), respectively. In order to simply simulate hydrological time series of ungauged large watersheds, data-driven model like the LSTM method is more applicable than the physics-based hydrological model having complexity due to various database pressure because it is able to memorize the preceding time series sequences and reflect them to prediction.