• 제목/요약/키워드: landslide susceptibility analysis

검색결과 83건 처리시간 0.026초

Investigating Regions Vulnerable to Recurring Landslide Damage Using Time Series-Based Susceptibility Analysis: Case Study for Jeolla Region, Republic of Korea

  • Ho Gul Kim
    • Journal of Forest and Environmental Science
    • /
    • 제39권4호
    • /
    • pp.213-224
    • /
    • 2023
  • As abnormal weather events due to climate change continue to rise, landslide damage is also increasing. Given the substantial time and financial resources required for post-landslide recovery, it becomes imperative to formulate a proactive response plan. In this regard, landslide susceptibility analysis has emerged as a valuable tool for establishing preemptive measures against landslides. Accordingly, this study conducted an annual landslide susceptibility analysis using the history of landslides that occurred over many years in the Jeolla region, and analyzed areas with a high potential for landslides in the Jeolla region. The analysis employed an ensemble model that amalgamated 10 data-based models, aiming to mitigate uncertainties associated with a single-model approach. Furthermore, based on the cumulative data regarding landslide susceptible areas, this research identified regions vulnerable to recurring landslide damage in Jeolla region and proposed specific strategies for utilizing this information at various levels, including local government initiatives, adaptation plan development, and development approval processes. In particular, this study outlined approaches for local government utilization, the determination of adaptation plan types, and considerations for development permits. It is anticipated that this research will serve as a valuable opportunity to underscore the significance of information concerning regions vulnerable to recurring landslide damage.

항공 LiDAR와 수치지도를 이용한 산사태 취약성 비교 분석 (A Comparative Analysis of Landslide Susceptibility Using Airborne LiDAR and Digital Map)

  • 김세준;이종출;김진수;노태호
    • 한국측량학회지
    • /
    • 제32권4_1호
    • /
    • pp.281-292
    • /
    • 2014
  • 본 연구는 산사태 관련 인자를 달리하여 산사태 취약성을 분석한 후, 정확도를 비교하고자 한다. 이를 위해 항공사진을 이용하여 산사태 위치를 추출하였고, 항공 LiDAR와 수치지도를 이용한 지형인자, 각종 주제도를 이용한 토양, 임상, 토지피복 인자를 추출하여 공간데이터베이스를 구축하였다. 산사태 취약성 지도는 로지스틱 회귀분석과 빈도비를 이용하여 산사태 취약지수를 산정하는 것에 의해 작성되었다. 분석결과, 항공 LiDAR와 수치지도의 상관관계는 거의 일치하였으며, 각 방법별로 작성된 산사태 취약성 지도 사이에는 강한 상관관계가 존재하였다. 각 방법별로 작성된 산사태 취약성 지도는 높은 예측 정확도를 보였다. 특히, 빈도비와 항공 LiDAR를 이용할 경우 성능이 더욱 향상되었다. 이를 통해 항공 LiDAR 자료는 효과적인 산사태 발생 예측 및 피해저감대책을 수립하는데 기여할 것으로 판단된다.

빈도비와 Cosine Amplitude Method를 이용한 진부지역의 퍼지기반 산사태 취약성 예측기법 비교 연구 (A Comparative Study of Fuzzy Based Frequency Ratio and Cosine Amplitude Method for Landslide Susceptibility in Jinbu Area)

  • 김강민;박혁진
    • 자원환경지질
    • /
    • 제50권3호
    • /
    • pp.195-214
    • /
    • 2017
  • 산사태 위험도 분석에서 범용적으로 활용되고 있는 통계적 취약성 분석 기법은 과거에 발생한 산사태의 위치 정보와 산사태 영향 인자들 사이의 상관관계를 통계적으로 분석하여 산사태 발생 가능성이 있는 지역을 예측하는 기법이다. 이러한 취약성 분석 기법에는 다양한 불확실성이 개입되는데 이러한 불확실성을 고려하기 위한 방법의 하나로 퍼지 기법이 활용되고 있다. 퍼지 기법은 퍼지 집합 이론이라는 수학적인 개념을 통해 불확실성을 표현하는 방법으로 특정 인자가 나타날 수 있는 정도를 소속 함수로 표현한다. 퍼지 기법은 영향 인자들의 소속 함수를 결정하는 방법과 각 영향 인자들의 소속 함수를 결합하는 연산 과정에 다양한 접근 방식이 존재하며, 기존의 연구들은 다양한 접근 방식을 활용하여 분석을 수행하여 왔다. 그러나 이렇게 다양한 접근 방식이 어떠한 결과의 차이를 초래하는지를 비교하는 연구는 수행된 사례가 적은 편이다. 따라서 본 연구에서는 진부 지역을 대상으로 빈도비를 활용하여 소속 함수를 산정하는 기법과 코사인 진폭법을 활용하여 소속 함수를 산정하는 기법을 비교하여 보았다. 또한 다양한 퍼지 연산 기법을 활용하여 산사태 취약성을 산정하고 이들 결과를 비교해 보았으며 ROC 그래프 기법을 활용하여 결과의 정확도를 산정하고 분석 기법의 적절성을 분석하였다.

환경정보시스템을 이용한 산사태 발생위험 예측도 작성: 경상북도를 중심으로 (Development of Landslide Hazard Map Using Environmental Information System: Case on the Gyeongsangbuk-do Province)

  • 배민기;정규원;박상준
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1189-1197
    • /
    • 2009
  • The purpose of this research was develop tailored landslide hazard assessment table (LHAT) in Gyeongsangbuk-do Province and propose building strategies on environmental information system to estimate landslide hazard area according to LHAT. To accomplish this purpose, this research investigated factors occurring landslide at 172 landslide occurred sites in 23 city and county of Gyeongsangbuk-do Province and analyzed what factors effected landslide occurrence quantity using the multiple statistics of quantification method(I). The results of analysis, factors affecting landslide occurrence quantity were shown in order of slope position, slope length, bedrock, aspect, forest age, slope form and slope. And results of the development of LHAT for predict mapping of landslide-susceptible area in Gyeongsangbuk-do Province, total score range was divided that 107 under is stable area(IV class), 107~176 is area with little susceptibility to landslide(III class), 177~246 is area with moderate susceptibility to landslide(II class), above 247 area with severe susceptibility to landslide(I class). According to LHAT, this research built landslide attribute database and made 7 digital theme maps at mountainous area located in Goryeong Gun, Seongju-Gun, and Kimcheon-City. The results of prediction on degree of landslide hazard using environmental information system, area with little susceptibility to landslide(III class) occupied 65.56% and severe susceptibility to landslide(I class) occupied 0.51%.

베이지안 예측모델을 활용한 농업 및 인공 인프라의 산사태 재해 위험 평가 (Landslide Risk Assessment of Cropland and Man-made Infrastructures using Bayesian Predictive Model)

  • 알-마문;장동호
    • 한국지형학회지
    • /
    • 제27권3호
    • /
    • pp.87-103
    • /
    • 2020
  • The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가 (Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model)

  • 라하누마 빈테 라시드 우르미;알-마문;장동호
    • 한국지형학회지
    • /
    • 제27권2호
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

GIS-based Landslide Susceptibility Mapping of Bhotang, Nepal using Frequency Ratio and Statistical Index Methods

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of the study is to develop and validate landslide susceptibility map of Bhotang village development committee, Nepal using FR (Frequency Ration) and SI (Statistical Index) methods. For the purpose, firstly, a landslide inventory map was constructed based on mainly high resolution satellite images available in Google Earth Pro, and rest fieldwork as verification. Secondly, ten conditioning factors of landslide occurrence, namely: altitude, slope, aspect, mean topographic wetness index, landcover, normalized difference vegetation index, dominant soil, distance to river, distance to lineaments and rainfall, were derived and used for the development of landslide susceptibility map in GIS (Geographic Information System) environment. The landslide inventory of total 116 landslides was divided randomly such that 70% were used for training and remaining 30% for validating result by receiver operating characteristics curve analysis. The area under the curve were found to be greater than 0.7 indicating an acceptable susceptibility maps obtained using FR and SI methods in GIS for hilly region of Nepal.

Effect of Spatial Resolutions on the Accuracy to Landslide Susceptibility Mapping

  • Choi, J. W.;Lee, S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.138-140
    • /
    • 2003
  • The aim of this study is to evaluate the effect of spatial resolutions on the accuracy to landslide susceptibility mapping. For this, landslide locations were identified in the Boun, Korea from interpretation of aerial photographs and field surveys. The topographic, soil, forest, geologic, linearment and land use data were collected, processed and constructed into a spatial database using GIS and remote sensing data. The 15 factors that influence landslide occurrence were extracted and calculated from the spatial database with 5m, 10m, 30m, 100m and 200m spatial resolutions. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by probability model, likelihood ratio, for the five cases spatial resolutions. The results of the analysis were verified using the landslide location data. In the cases of spatial resolution 5m, 10m and 30m, the verification results was similar, but in the cases of 100m and 200m the results worse than the others. Because the scale of input data was 1:5,000 ? 1:50,000, so the cases of 5m, 10m and 30m have similar accuracy but the cases of 100m and 200m have the lower accuracy. From this, there is an effect of spatial resolutions on accuracy and landslide susceptibility mapping the result is dependent on input map.

  • PDF