• Title/Summary/Keyword: landslide prediction

Search Result 156, Processing Time 0.033 seconds

Prediction of Landslides and Determination of Its Variable Importance Using AutoML (AutoML을 이용한 산사태 예측 및 변수 중요도 산정)

  • Nam, KoungHoon;Kim, Man-Il;Kwon, Oil;Wang, Fawu;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.315-325
    • /
    • 2020
  • This study was performed to develop a model to predict landslides and determine the variable importance of landslides susceptibility factors based on the probabilistic prediction of landslides occurring on slopes along the road. Field survey data of 30,615 slopes from 2007 to 2020 in Korea were analyzed to develop a landslide prediction model. Of the total 131 variable factors, 17 topographic factors and 114 geological factors (including 89 bedrocks) were used to predict landslides. Automated machine learning (AutoML) was used to classify landslides and non-landslides. The verification results revealed that the best model, an extremely randomized tree (XRT) with excellent predictive performance, yielded 83.977% of prediction rates on test data. As a result of the analysis to determine the variable importance of the landslide susceptibility factors, it was composed of 10 topographic factors and 9 geological factors, which was presented as a percentage for each factor. This model was evaluated probabilistically and quantitatively for the likelihood of landslide occurrence by deriving the ranking of variable importance using only on-site survey data. It is considered that this model can provide a reliable basis for slope safety assessment through field surveys to decision-makers in the future.

Landslide Susceptibility Mapping for 2015 Earthquake Region of Sindhupalchowk, Nepal using Frequency Ratio

  • Yang, In Tae;Acharya, Tri Dev;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.443-451
    • /
    • 2016
  • Globally, landslides triggered by natural or human activities have resulted in enormous damage to both property and life. Recent climatic changes and anthropogenic activities have increased the number of occurrence of these disasters. Despite many researches, there is no standard method that can produce reliable prediction. This article discusses the process of landslide susceptibility mapping using various methods in current literatures and applies the FR (Frequency Ratio) method to develop a susceptibility map for the 2015 earthquake region of Sindhupalchowk, Nepal. The complete mapping process describes importance of selection of area, and controlling factors, widespread techniques of modelling and accuracy assessment tools. The FR derived for various controlling factors available were calculated using pre- and post- earthquake landslide events in the study area and the ratio was used to develop susceptibility map. Understanding the process could help in better future application process and producing better accuracy results. And the resulting map is valuable for the local general and authorities for prevention and decision making tasks for landslide disasters.

Development of a Landslide Hazard Prediction Model using GIS (GIS를 이용한 산사태 위험지 판정 모델의 개발)

  • Lee, Seung-Kii;Lee, Byung-Doo;Chung, Joo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.81-90
    • /
    • 2005
  • Based on the landslide hazard scoring system of Korea Forest Research Institute, a GIS model for predicting landslide hazards was developed. The risk of landslide hazards was analyzed as the function of 7 environmental site factors for the terrain, vegetation, and geological characteristics of the corresponding forest stand sites. Among the environmental factors, slope distance, relative height and shapes of slopes were interpreted using the forestland slope interpretation module developed by Chung et al. (2002). The program consists of three modules for managing spatial data, analyzing landslide hazard and report-writing, A performance test of the model showed that 72% of the total landslides in Youngin-Ansung landslides area took place in the highly vulnerable zones of grade 1 or 2 of the landslide hazard scoring map.

  • PDF

Machine Learning-based landslide susceptibility mapping - Inje area, South Korea

  • Chanul Choi;Le Xuan Hien;Seongcheon Kwon;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.248-248
    • /
    • 2023
  • In recent years, the number of landslides in Korea has been increasing due to extreme weather events such as localized heavy rainfall and typhoons. Landslides often occur with debris flows, land subsidence, and earthquakes. They cause significant damage to life and property. 64% of Korea's land area is made up of mountains, the government wanted to predict landslides to reduce damage. In response, the Korea Forest Service has established a 'Landslide Information System' to predict the likelihood of landslides. This system selects a total of 13 landslide factors based on past landslide events. Using the LR technique (Logistic Regression) to predict the possibility of a landslide occurrence and the accuracy is known to be 0.75. However, most of the data used for learning in the current system is on landslides that occurred from 2005 to 2011, and it does not reflect recent typhoons or heavy rain. Therefore, in this study, we will apply a total of six machine learning techniques (KNN, LR, SVM, XGB, RF, GNB) to predict the occurrence of landslides based on the data of Inje, Gangwon-do, which was recently produced by the National Institute of Forest. To predict the occurrence of landslides, it is necessary to process converting landslide events and factors data into a suitable form for machine learning techniques through ArcGIS and Python. In addition, there is a large difference in the number of data between areas where landslides occurred or not. Therefore, the prediction was performed after correcting the unbalanced data using Tomek Links and Near Miss techniques. Moreover, to control unbalanced data, a model that reflects soil properties will use to remove absolute safe areas.

  • PDF

Landslide Susceptibility Assessment Considering the Saturation Depth Ratio by Rainfall Change (강우변화에 따른 토층 내 침투깊이를 고려한 산사태위험지수 개발)

  • Kwak, Jae Hwan;Kim, Man-Il;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • Understanding rain infiltration into the ground is an important feature of landslide risk evaluation. In this study, a landslide risk index for the study area is suggested, wherein the result of the landslide risk evaluation, based on the factor of safety (FS), is used. The landslide risk index is a landslide risk prediction index that utilizes the saturated depth ratio of the ground. Based on the landslide risk result for the study area, it was found that the FS was first to decrease. However, it gradually became convergent over the 50-year rainfall intensity study period, a result that is similar to the relationship between the saturated depth ratio and soil thickness. Moreover, saturated depth was also found to be deeper on gentle slopes than steep slopes. As such, the landslide risk index, based on the Inhu-ri study result, is thus suggested. Additionally, the suggested landslide risk index was compared and analyzed against the rainfall intensity of previous landslide experience. Results thus revealed that almost all landslides that occurred were over 0.7, which is the second grade, based on the landslide risk index.

Development of Hazard Prediction Map S/W for Mountain River Road (산지하천도로 재해지도 작성을 위한 SW 개발)

  • Jang, Dae Won;Yang, Dong Min;Kim, Ki Hong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The objectives of this research are to develop hazard prediction map S/W for mountain river road. This mountain river road disaster happens by debris flow, landslide, debris accumulation and this cause are locally rainfall and heavy rainfall. System is constructed to GIS base. This research app lied to Kangwondo. We developed protocol to analyze calamity danger in mountain district area and examined propriety system. Furthermore examined the DB required and expression plan for hazard map creation SW construction by mountain rivers road.

  • PDF

Analysis of Landslide and Debris flow Hazard Area using Probabilistic Method in GIS-based (GIS 기반 확률론적 기법을 이용한 산사태 및 토석류 위험지역 분석)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.