• Title/Summary/Keyword: landslide disaster

Search Result 193, Processing Time 0.02 seconds

Development of Integrated Management System for Steep Slope Prevention and Management (급경사지 방재 및 관리를 위한 급경사지정보 통합관리시스템 개발)

  • Lee, Kyungchul;Jang, Yonggu;Song, Jihye;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.77-85
    • /
    • 2014
  • Recently, the National Emergency Management Agency of Korea has been operating the National Disaster Management System. Nevertheless, there are numerous difficulties in systematic controlling the steep slope DB promptly, because the system's functions in input and control for steep slope information are merely simple. Futhermore, the hazard degrees of steep slope lands nowadays have risen suddenly in accordance with the increase rate of large scale landslides such as the landslide cases of Umyeonmountain, Chuncheon province and others or sever rain storm cases. these lead to rapid increases in frequencies of nature disasters nationally. therefore, it is needed to develop the GIS-based integrated management system for steep slope information in order to manage disasters in advance or high-degree control. This study shows the national GIS-based integrated management system to prevent the disasters that caused by steep slope lands. The integrated management system developed in this study consists of surface information input modules, realtime DB liaison modules of integrated underground information, V-world background map-based GIS, integrated management system for steep slope information user modules, realtime liaison interface modules designed for utilizing steep slope information. Also, tests about stability of data storage, system stability and consistency of processing speed were performed.

Development of Cutting Slope Management System Using PDA (개인용 휴대 단말기를 이용한 절토사면 관리시스템 개발)

  • Kim, Jae-Cheol;Park, Jae-Kook;Yang, In-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.59-69
    • /
    • 2007
  • The scale of a natural disaster grows bigger and bigger every year. The government spends much of its budget on recovering the resulting damage on a national scale. It is important to shift the paradigm from taking measures after a disaster to that of taking preventive actions before a disaster in order to bring a fundamental resolution to such problems. In taking preventive actions and policies, it is necessary to integrate various kinds of advanced technologies including IT, high-tech information gathering technology and operational technology, and to predict and evaluate natural disasters on a comprehensive level. Although Korea is a country with a strong IT sector, most information gathering is still performed in paper. In particular, information about the areas of previous landslide occurrences and slopes remains on paper, which makes it difficult to share the information and to discern the contents, and also raises the possibility of missing documents. Thus this study set out to develop an information gathering and management system for cutting slopes using PDA from the perspective of information gathering, system compatibility, and information management. As a result, field information may be gathered in a variety of forms (location, photos, and texts) real-time. A rough judgment was also made of the stability of rock slopes using the SMR method on the field.

  • PDF

A Study for the Techniques and Applications of NIR Remote Sensing Based on Statical Analyses of NIR-related Papers (NIR 관련 논문 통계 분석에 의한 NIR 원격탐사의 기술 및 활용분야 고찰)

  • Baek, Won-Kyung;Park, Sung-Hwan;Jeong, Nam-Ki;Kwon, Sookyung;Jin, Won-Ji;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.889-900
    • /
    • 2017
  • In this study, we analyzed the paper about NIR (Near-Infrared) remote sensing data and systematically summarized the research and application fields of NIR. To do this, we conducted a case study on the use of NIR in domestic journals, and SCI journals in the field of technology development for the last 5 years. After selection, a total of 281 journals were analyzed. For the statistical analysis, the classification was divided into subclasses and the dominant research trends were examined. As a result, the researchers who wrote the papers made the highest score of about 60% or more at university. In the field of application, 50% of land, 30% of environment, and 11% of disaster were distributed on SCI journals. In Korea, on the other hand, 55% of land, 24% of environment and 10% of disasters were distributed. In addition, 17% of the national land management and 8% of the geological / natural resources. Disaster observation using NIR was used for landslide, drought, weather disaster and flood. In particular, meteorological disasters are a result of study on Asian dust. However, there were no results of forest fire detection in Korea. Considering the domestic situation, it seems necessary to carry out additional and active research on this. It is expected that this statistical analysis data will be used as basic data to help expand the NIR technology development and utilization field in Korea in the future.

A Simulation of a Small Mountainous Chachment in Gyeoungbuk Using the RAMMS Model (RAMMS 모형을 이용한 경북 소규모 산지 유역의 토석류 모의)

  • Hyung-Joon Chang;Ho-Jin Lee;Seong-Goo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In Korea, mountainous areas cover 60% of the land, leading to increased factors such as concentrated heavy rainfall and typhoons, which can result in debris flow and landslide. Despite the high risk of disasters like landslides and debris flow, there has been a tendency in most regions to focus more on post-damage recovery rather than preventing damage. Therefore, in this study, precise topographic data was constructed by conducting on-site surveys and drone measurements in areas where debris flow actually occurred, to analyze the risk zones for such events. The numerical analysis program RAMMS model was utilized to perform debris flow analysis on the areas prone to debris flow, and the actual distribution of debris flow was compared and analyzed to evaluate the applicability of the model. As a result, the debris flow generation area calculated by the RAMMS model was found to be 18% larger than the actual area, and the travel distance was estimated to be 10% smaller. However, the simulated shape of debris flow generation and the path of movement calculated by the model closely resembled the actual data. In the future, we aim to conduct additional research, including model verification suitable for domestic conditions and the selection of areas for damage prediction through debris flow analysis in unmeasured watersheds.

Slope Stability by Variation of Rainfall Characteristic for Long Period (장기간 강우특성 변화에 따른 국내 사면의 안정성)

  • Lee, Jeong-Ju;Kim, Jae-Hong;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

Analysis of Forest Environmental Factors on Torrent Erosion control work area in Gyeongsangnam-do - Focus on Erosion Control Dam and Stream Conservation - (경남지역 야계사방사업지의 산림환경특성 분석 - 사방댐 및 계류보전사업을 중심으로 -)

  • Kang, Min-Jeng;Kim, Ki-Dae;Oh, Kang-San;Park, Jin-Won;Park, Jae-Hyeon
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.111-120
    • /
    • 2016
  • The objective of this study was to provide basic information for selecting the right timing and the right place of erosion control of stream on Gyeongsangnam-do. In order to achieve this objective, a total of 526 erosion control dams and 230 mountains stream conservation facilities on the constructed places and construction planned places for the erosion control were investigated on site, forest physiognomy, and hydrologic conditions. The erosion control dams and mountain stream conservation facilities were mostly constructed in the area, which has the sedimentary rock, 200-400m of altitude, a slope of 21~30°, and II of landslide hazard map. Among the forest environmental factors, it was only similar to the construction frequency in the areas that have small diameter class, III age class. Also, we investigated the hydrological environmental factors that determine the size and numbers of erosion control dam. The places constructed to the highest frequency were below 50ha in the area, 2.1~4.0km/㎢ of drainage density, longitudinal water system, 61~90mm of maximum precipitation per hour, and 201~300mm of day maximum precipitation. As the results, the sites and floodgate conditions between the constructed places and stream conservation facilities for the erosion control showed to be very similar. Therefore, these results indicate that the erosion control of the stream of the areas, which have the disruption of mountain peaks and the high erosion risk areas, should be used on both the erosion control dam and stream conservation facilities.

Case Study for Efficiency of Counter-Debrisflow Structures in Baekyang Mt. (토석류 방재구조물 성능 검토 수치해석 - Case study: 부산 백양산)

  • Jeong, Seokil;Song, Chag Geun;Kim, Hong Taek;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.84-89
    • /
    • 2018
  • The number of landslides has increased since the 2000s due to the increased frequency of heavy rainfall caused by abnormal weather. A variety of debris flow prevention facilities have been installed as a countermeasure against this problem. However, it is not easy to evaluate the efficiency of debris flow prevention structures except for the structures with constant volume such as the erosion dam, because the other structures are limited to be reproduced in simulation program for debris flow. Therefore, the methods by which the debris flow prevention structures were modeled were proposed, and the efficiency of four prevention structures installed in Baekyang Mt. in Busan was evaluated with UDS, which accuracy had been verified, using these methods. The initial amount of debris flow was determined based on landslide which occurred in 2014, and specifications of the complex retaining walls around the settlements were measured and applied modeling for terrain. The numerical results showed that the efficiency of debris flow prevention structures could be quantitatively presented. Among the debris flow prevention structures installed in Baekyang Mt., prevention structure of barrier type for debris flow was the most efficiency and debris flow prevention device was the lowest efficiency when the only depth of debris was evaluated. It seems that this study is meaningful to propose the methods which were used to model the debris flow prevention structures that could not be reproduced in most 2D debris flow numerical analysis programs. If precise verification of the presented methods is carried out, it will be possible to provide clear criteria for the efficiency evaluation method of disaster prevention structures.

Soil Volume Computation Technique at Slope Failure Using Photogrammetric Information (영상정보를 활용한 사면 붕괴 토사량 산정 기법)

  • Bibek, Tamang;Lim, Hyuntaek;Jin, Jihuan;Jang, Sukhyun;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The uses of unmanned aerial vehicles (UAV) have been expanding in agriculture surveys, obtaining real time updates of dangerous facilities where human access is difficult, disaster monitoring, and 3D modeling. In reality, there is an upsurge in the application of UAVs in fields like, construction, infrastructure, imaging, surveying, surveillance and transportation. Especially, when the slope failure such as landslide occurs, the uses of UAVs are increasing. Since, the UAVs can fly in three dimensions, they are able to obtain spatial data in places where human access is nearly impossible. Despite of these advantages, however, the uses of UAVs are still limited during slope failure. In order to overcome these limitations, this study computes the soil volume change during slope failure through the computation technique using photogrammetric information obtained from UAV system. Through this study, it was found that photogrammetric information from UAV can be used to acquire information on amount of earthworks required for repair works when slope collapse occurs in mountainous areas, where human access in difficult.

Application of GeoWEPP to determine the annual average sediment yield of erosion control dams in Korea

  • Rhee, Hakjun;Seo, Junpyo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.803-814
    • /
    • 2020
  • Managing erosion control dams requires the annual average sediment yield to determine their storage capacity and time to full sediment-fill and dredging. The GeoWEPP (Geo-spatial interface for Water Erosion Prediction Project) model can predict the annual average sediment yield from various land uses and vegetation covers at a watershed scale. This study assessed the GeoWEPP to determine the annual average sediment yield for managing erosion control dams by applying it to five erosion control dams and comparing the results with field observations using ground-based LiDAR (light detection and ranging). The modeling results showed some differences with the observed sediment yields. Therefore, GeoWEPP is not recommended to determine the annual average sediment yield for erosion control dams. Moreover, when using the GeoWEPP, the following is recommended :1) use the US WEPP climate files with similar latitude, elevation and precipitation modified with monthly average climate data in Korea and 2) use soil files based on forest soil maps in Korea. These methods resulted in GeoWEPP predictions and field observations of 0 and 63.3 Mg·yr-1 for the Gangneung, 142.3 and 331.2 Mg·yr-1 for the Bonghwa landslide, 102.0 and 107.8 Mg·yr-1 for the Bonghwa control, 294.7 and 115.0 Mg·yr-1 for the Chilgok forest fire, and 0 and 15.0 Mg·yr-1 for the Chilgok control watersheds. Application of the GeoWEPP in Korea requires 1) building a climate database fit for the WEPP using the meteorological data from Korea and 2) performing further studies on soil and streamside erosion to determine accurate parameter values for Korea.

The Preliminary Analyses on Damage Types of Stone Hertage induced by Natural Hazard, Korea (석조문화재의 자연재해 피해양상 예비분석)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Kim, Jin-Kwan;Lee, Jin-Young;Kim, Min-Seok;Yi, Sang-Heon;Kim, Jeong-Chan;Nahm, Wook-Hyun;Yang, Yun-Sik
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • The severe damage of cultural heritages induced by natural hazards like heavy rain has been dramatically increased since 1990. The number of the repair works of stone heritage of 2005 was six times as many as those of 1986 year. Especially the ratio of the repair works of Gyeongsang Province and Jeolla Province stood 63% of those of all over the country. Since 1990, the typhoons usually struck the southern part of Korea and went northward. The heavy damage of stone heritages in two provinces was caused by them. We made a preliminary survey the stone heritages that exposed to the natural hazards on the basis of repair works of them and a field survey. The analysis results indicate that the natural hazards such as landslide and soil disaster of the stone heritages related to a sloping surface stood 58% of all kind of natural hazards. The reasons are caused by the 59 % of all the stone heritages distributed in a sloping surface resulted in natural hazards like landslide and soil disaster. The bases of stone heritages can be easily eroded by the surface water with high energy induced by heavy rainfall. Most of the stone heritages like Maebul were engraved on a natural rock wall(outcrop). But some of them engraved on rolling stones are very vulnerable in a change of a base condition caused by erosion and ground subsidence and they can be tilted or fell down. The distribution of the stone heritages vulnerable in natural hazard is related to that of the rainfall distribution compounded five typhoons after 1990. Most of them are included in level two on the rainfall distribution map except those of Taean peninsula and some of Gyeonggi Province. They seem to be rather related to the rainfall distribution of the Typhoon Olga.

  • PDF