• Title/Summary/Keyword: landing point

Search Result 75, Processing Time 0.034 seconds

A Study on the One-leg Drop landing Pattern and Muscular Activity depending on Chronic Ankle instability among Basketball Club members (농구동호인의 만성발목관절불안정성에 따른 한발착지패턴과 근활성도에 관한 연구)

  • Jeong, Kyoung-Yeol;Kim, Tae-Gyu
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.481-488
    • /
    • 2021
  • This study aimed to identify and to compare the difference the changes of one-leg drop landing pattern depending on chronic ankle instability (CAI) among basketball club members. For 30 basketball club members who are currently participating in recreational basketball games in Busan Metropolitan City, 21 CAI groups and 9 CON groups were classified according to the CAI standards provided by the International Ankle Consortium. The one-leg drop landing pattern was measured with the alignment of the lower extremity and joint movement at the initial contact (IC), and the point of peak knee flexion. In addition, the one-leg drop landing pattern was tested with the muscular activity of tibialis anterior, peroneus longus, medial gastrocnemius and gluteus medius at the initial contact (IC), heel contact (HC), and the point of peak knee flexion. The results of this study showed that there was no significant difference in lower limb alignment and lower limb muscular activity among single leg drop landing. These results showed no significant differences in the one leg drop landing pattern and muscular activity depending on CAI. The further studies should classify the types of chronic ankle instability and consider the physical demands and movement characteristics depending on their playing position for providing useful information on prevention of CAI in basketball club members.

Analysis and Design of Dron System for Smart Safety-City Platform Construction (스마트 안전도시 플랫폼 구축을 위한 드론 시스템의 분석 및 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.93-99
    • /
    • 2020
  • It seems to be increased rapidly that practical uses of intelligent Dron for public mission performance such as surveillance, prevention of disaster accident, relief etc with Dron technology development. Dron is needed for major technology realization of detection and trace technology of target, flight control and obstacle avoidance during flighting, detection and control of landing point functions to use smart safety-city platform construction. This dron system cause a great ripple effect technically and promote industrialization in the field of new technology. In this paper, an effective analysis and design method of dron system software will be presented by showing user requirement analysis using object-oriented method, flowchart and screen design.

Extraction of the landing point of the bucket on the stockpile (야적파일위의 버킷 착지점 추출)

  • Choe, Jin-Tae;An, Hyeon-Sik;Lee, Gwan-Hui;Sin, Gi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.273-279
    • /
    • 1998
  • 철강석 또는 석탄의 적치장에서는 이들 원석을 퍼내어 용광로로 보내주는 불출기(reclaimer)가 사용되고 있다. 불출기를 자동화하려면 야적파일에 불출용 회전 버킷(bucket)을 자동착지시키는 방법이 요구된다. 본 논문에서는 야적 파일 표면위의 버킷 착지점을 추출하는 방법을 제시한다. 이 방법은 파일의 3차원 형상 검출, 파일의 등고선 추출, 불출기의 역기구학해의 도출 및 착지점 추출 알고리즘으로 이루어진다. 파일의 3차원 형상과 거리를 측정하기 위한 3차원 형상 검출기가 2차원 레이저 검출기에 수평주사(scanning)용 모터를 부착하여 개발하였고, 다 단계의 영상처리를 통해 버킷이 작업할 수 있도록 파일의 작업 등고선을 추출하였다. 불출기가 회전 버킷에 의해 기구학적으로 여유자유도로 이루어 졌음을 보였으며, 역기구학 해를 구하는 방법을 아울러 제시하였다. 그리고 버킷의 착지점을 과부하 방지와 단위 시간당 생산성을 최대화하는 성능기준에 근거하여 구하였다. 또한 개발된 시스템을 제철소 원석 야적장의 불출기에 설치 시험하여 타당성을 입증하였다.

  • PDF

Design and performance test of a foot for a jointed leg type quadrupedal walking robot (관절형 4족 보행로봇용 발의 설계 및 성능시험)

  • Hong, Ye-Seon;Yi, Su-Yeong;Ryu, Si-Bok;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1250-1258
    • /
    • 1997
  • This paper reports on the development of a new foot for a quadrupedal jointed-leg type walking robot. The foot has 2 toes, one at the front and the other at the rear side, for stable landing on uneven ground by point contact. The toes can move up and down independantly, guided by double-wishbone shaped parallel links which enable the lower leg to rotate with respect to a remote center on the ground surface. The motion of each toe is damped by a hydropneumatic shock absorber integrated in the foot in order to absorb the dynamic landing shock. Furthermore, the new foot can reduce the maximum hip joint drive torque by shortening the moment arm length between the hip joint and the landing force vector on the ground. Intensive experiments were carried out in this study by using a one-leg walking model to investigate the soft landing performance of the foot which could be hardly offered by conventional robot feet such as a flat plate with a gimbal type ankle joint. And it was confirmed that the hip joint torque of the leg walking on the flat surface could be reduced remarkably by using the new foot.

Optimal Guidance and Nonlinear Tracking Control for a Lunar Lander

  • Hwang, Myung-Shin;Kim, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.2-167
    • /
    • 2001
  • This paper presents guidance and control laws which guarantee a minimum fuel consumption and have obustness against various disturbances during a terminal-landing phase on the lunar surface. The nonlinear robust tracking control system is designed to track the reference profiles, which are expressed by exponential functions. An adjustment law in the tracking controller is given in the form of the differential equations with respect to the controller´s variable gains. Computer simulations are performed to examine the tracking accuracy, the robustness in a thrust failure mode, and the vertical soft landing at a pre-assigned point on the lunar surface. The results of numerical simulation show the effectiveness of the present control law.

  • PDF

A Performance Analysis of a Glidepath Tracking Algorithm for Autolanding of a UAV (무인항공기 자동착륙을 위한 활강궤적 추종 알고리듬 성능분석)

  • Choi, Young-Hyun;Koo, Hueon-Joon;Kim, Jong-Sung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.262-269
    • /
    • 2005
  • Automatic landing of UAVs receives increasing interest these days, with increasing number of the developed UAV systems. In this paper, a glidepath tracking algorithm of the subscale UAV was proposed and the performance was analyzed. Flight data analysis shows that the existing autolanding flight control algorithm has a classical type glidepath control. This paper presents an alternative glidepath tracking strategy based on embedded flight control law. The performance of the proposed strategy was investigated through the TDP(Touch Down Point) error analysis with regard to various flight environment: steady headwind, atmospheric disturbance, communication transfer delay. It was verified that the proposed glidepath tracking strategy can be successfully applied to the practical autolanding of UAV systems.

Implementation of Altitude Information for Flight Simulator in OpenSceneGraph (항공 시뮬레이터를 위한 OpenSceneGraph기반의 고도 정보 구현 방안)

  • Lee, ChungJae;Kim, JongBum;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • When it comes to develop flight simulator, HAT (Height Above Terrain) is required to provide altitude information to the pilot who learns how to control an airplane in landing and takeoff situation. However, there might be inconsistent problem between real terrain and simulation information since current implementation of HAT simply depends on center of gravity point on the airplane. To overcome mentioned problem, in this paper, we propose how to obtain more accurate altitude information than existing scheme by making use of HAT and HOT (Height Of Terrain) information of landing equipments according to movement of the airplane. Moreover, we demonstrate the accuracy of the proposed scheme through new flight simulator developed through OSG(OpenSceneGraph) by taking example of terrain information for domestic airport.

A Study on Automatic Precision Landing for Small UAV's Industrial Application (소형 UAV의 산업 응용을 위한 자동 정밀 착륙에 관한 연구)

  • Kim, Jong-Woo;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.27-36
    • /
    • 2017
  • In almost industries, such as the logistics industry, marine fisheries, agriculture, industry, and services, small unmanned aerial vehicles are used for aerial photographing or closing flight in areas where human access is difficult or CCTV is not installed. Also, based on the information of small unmanned aerial photographing, application research is actively carried out to efficiently perform surveillance, control, or management. In order to carry out tasks in a mission-based manner in which the set tasks are assigned and the tasks are automatically performed, the small unmanned aerial vehicles must not only fly steadily but also be able to charge the energy periodically, In addition, the unmanned aircraft need to land automatically and precisely at certain points after the end of the mission. In order to accomplish this, an automatic precision landing method that leads landing by continuously detecting and recognizing a marker located at a landing point from a video shot of a small UAV is required. In this paper, it is shown that accurate and stable automatic landing is possible even if simple template matching technique is applied without using various recognition methods that require high specification in using low cost general purpose small unmanned aerial vehicle. Through simulation and actual experiments, the results show that the proposed method will be made good use of industrial fields.

Aerodynamic performance enhancement of cycloidal rotor according to blade pivot point movement and preset angle adjustment

  • Hwang, In-Seong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This paper describes aerodynamic performance enhancement of cycloidal rotor according to the blade pivot point movement and the blade preset angle adjustment. Cycloidal blade system which consists of several blades rotating about an axis in parallel direction and changing its pitch angle periodically, is a propulsion mechanism of a new concept vertical take off and landing aircraft, cyclocopter. Based on the designed geometry of cyclocopter, numerical analysis was carried out by a general purpose commercial CFD program, STAR-CD. According to tills analysis, the efficiency of cycloidal rotor could be improved more than 15% by the introduced methods.

A Study on the Image-based Automatic Flight Control of Mini Drone (미니드론의 영상기반 자동 비행 제어에 관한 연구)

  • Sun, Eun-Hey;Luat, Tran Huu;Kim, Dongyeon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.536-541
    • /
    • 2015
  • In this paper, we propose a the image-based automatic flight control system for the mini drone. Automatic flight system with a camera on the ceiling and markers on the floor and landing position is designed in an indoor environment. Images from the ceiling camera is used not only to recognize the makers and landing position but also to track the drone motion. PC sever identifies the location of the drone and sends control commands to the mini drone. Flight controller of the mini drone is designed using state-machine algorithm, PID control and way-point position control method. From the, The proposed automatic flight control system is verified through the experiments of the mini drone. We see that known makers in environment are recognized and the drone can follows the trajectories with the specific ㄱ, ㄷ and ㅁ shapes. Also, experimental results show that the drone can approach and correctly land on the target positions which are set at different height.