• Title/Summary/Keyword: landfill leachate

Search Result 363, Processing Time 0.033 seconds

혼합반응 차수재의 투수특성 연구 (The Permeability Characteristics of the Reactive Soil - Bentonite Landfill Liner)

  • 이강원;황의석;안기봉;정하익;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.545-552
    • /
    • 2002
  • The purpose of this paper is to investigate permeability characteristic of soil-bentonite landfill liner and development of desirable liner system. In this study, permeability tests for soil-bentonite, reactive soil-bentonite and apply bentomat and reactive mat are carried out under the low and high water pressure. According to test result, additional amount of bentonite decreases the coefficient of permeability up to the bentonite mixture ratio of 15%. Therefore, the permeability test for landfill liner's indicated that the use of general water would be in more safe side because the liner system show low permeability duet decrease effect of porous by suspended soild(SS). The permeability of leachate for Zeolite mixture ratio 0, 5, 10% with bentonite mixture ratio 15% showed negligible variation in the permeability with general water. Therefore, Zeolite could be used as a successful that is available purification material for the treatment of leachate, without changing the of landfill liners. Also odious smell could be removed by adding smell amount of Zeolite to the leachate. It was revealed that the bentomat and reactive mat installed in soil-bentonite layer effectively improved the permeability as well as purification of the leachate.

  • PDF

사용종료매립지 정비를 위한 흙-시멘트 연직차수벽의 차수성능 평가 (Evaluation of Leachate Containment by Soil-cement Walls for a Closed Landfill)

  • 이동건;안조환;권기욱;구자공;배우근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권1호
    • /
    • pp.62-70
    • /
    • 2011
  • This study was conducted to evaluate the performance of soil-cement walls (SCWs) to control leachate from a leaking landfill site. Tracer tests revealed that the SCW was effective to control groundwater seepage. Approximately two-months of curing period appeared to be sufficient to ensure thorough containment of landfill leachate, although a three-week period was not enough. The water quality of the monitoring wells after construction of the SCWs met the groundwater quality standard of the korean Waste Management Act, except for bacteria and coliform groups. Also an analysis of a spring water around the landfill showed that the concentrations of ammonia, inorganic nitrogen and soluble manganese which had been common contaminants in the spring water decreased dramatically after constructing the walls. Therefore, the results suggested that a SCW can be an attractive method to control leachate from a leaking landfill site.

도시폐기물매립지침출수의 병합처리에 관한 연구 (A Study on the Combined Treatment of Municipal Solid Waste Landfill Leachate)

  • 김동민;이병인
    • 환경위생공학
    • /
    • 제11권1호
    • /
    • pp.45-55
    • /
    • 1996
  • An experimental research was conducted in order to study the combined treatment o of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was that of Chungnang municipal sewage treatment plant in Seoul. Several sets of bench~scale sequencing batch reactor(SBR) were used as e experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of treatment time. The experiment lasted for about 2 years. The result are as follows ; 1. The characteristics of leachate were pH 7.5~8.2, BOD 80~336mg/L, COD 908~1,460mg/L, NH3-N 1,409~2,330mg/L, T~P 2.7~7.lmg/L, Cl~3,540~4,085mg/L, a and heavy metals are a very small amount. And the characteristics of sewage were pH 6.9~7.3, BOD 78.4~129.3mg/L, COD 121.2~305.0mg/L, T~N 14.9~36.4mg/L, T-P 2.3~8.9mg/L. 2. The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before bi이ogical treatment and a combined treatment of municipal sewage. 3. The various contents of the leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage. And the removal efficiency of COD increased n notably, as its treatment time increased. 4. The various contents of the electrolytic treated leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 89.9%, 86.1%, 79.2%, and 69.8%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 30 % of that of sewage. And the removal efficiency of C COD increased notably, as its treatment time increased.

  • PDF

연속회분식활성슬러지공법을 이용한 매립지 침출수와 하수의 병합처리에 관한 연구 (Study on the Combined Treatment of Municipal Leachate and Sewage by Sequencing Batch Reactor.)

  • 이병인;이상혁
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.145-152
    • /
    • 1993
  • An experimental research was conducted in order to study the treatability of leachate and a combined wastewater of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was obtained from Chungnang municipal sewage treatment plant of Seoul. Several sets of bench-scale sequencing batch reactor(SBR) were used as experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of the hydraulic retention time(HRT). The experiment lasted for about 8 months. The result are as follows ; 1) The characteristics of leachate were pH 7.4~8.1, BOD 280~450 mg/l, COD 1300 ~ 1350 mg/l, T-N 2021 ~2110 mg/1,7-P 2.7 ~3.2 mg/l, Cl-3540 ~4085 mg/l, and heavy metals are a very small amount. And the characteristics of sewage Ivere pH 6.9~7.3, BOD 78.4~129.3 mg/1, COD 121.2~305.0 mg/l, T-N 14.9~36.4 mg/l, T-P 1.3 ~5.9 mg/l. 2) The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before biological treatment and a combined treatment of municipal serfage. 3) The various contents of the leachate were 5%, 10%, and 50% and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage.

  • PDF

침출수 무배출식 모형매립조를 이용한 도시폐기물 분해특성 (Decomposition Characteristics of Municipal Solid Wastes in Lysimeter Without Leachate Discharge)

  • 류돈식;이해승;이찬기
    • 환경위생공학
    • /
    • 제15권2호
    • /
    • pp.49-57
    • /
    • 2000
  • The objective of this study is to find solid waste decomposition in landfill without leachate discharge. This study was observed variation of landfill gas production rate and leachate for stabilization assessment, and using four sets of lysimeter as experimental apparatus. Soild waste decomposition was accelerated in without leachate discharge system by sufficient moisture for methane bacteria. And gas production rate was between 54.2ℓ/kg VS∼335.9ℓ/kg VS in each lysimeter. Generation time of methane gas was showed different in each lysimeter, but it was much faster than literature research. The time of stabilization phase were began as follows : L-1 400 day, L-2 350 day, L-3 170 day and L-4 70 day respectively. Decreasing times of BOD/COD ratio and C/N ratio were necessary more than literature research because organic matter was not discharge such as wash out.

  • PDF

폐기물 매립지 침출수와 침출수 내의 휴믹물질이 GCL의 투수계수에 미치는 영향

  • 한영수;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.208-211
    • /
    • 2001
  • Geosynthetic Clay Liners (GCLs) have been used for the applications of the hydraulic containment system in landfill due to inexpensive costs, simple workability and distinguished ability as a barrier material. However, bentonite of GCLs is easy to be damaged by the chemical solutions. Thus, there is a need to evaluate the potential susceptibility of GCLs causing Increase the hydraulic conductivity when GCLs are exposed to raw leachate and dissolved humic substances from landfill leachate. The hydraulic conductivity tests were performed with flexible-wall permeameter (the falling -headwater/rising -tailwater procedure) in order to verify the potential susceptibility of GCLs. The values of the hydraulic conductivity conducted with raw leachate as a permeant liquid increased considerably; however, The change of the hydraulic conductivity in the case of humic and fulvic acid were not worthy of notice. As the results of swelling tests of bentonite, however, humic substances can affect badly on the dispersion behavior of bentonite. These results indicate that humic substances dissolved in leachate could reduce the hydraulic conductivity of GCLs in landfill.

  • PDF

난지도 매립장 지반을 통한 오염이동 특성과 제어 (The Characteristic and Control of Contaminant Transport through the Subsurface of Nanjido Landfill)

  • 장연수;이광열
    • 대한지하수환경학회지
    • /
    • 제1권1호
    • /
    • pp.1-5
    • /
    • 1994
  • 난지도 매립장 하부지반을 통한 오염이동 특성을 2차원 유한 요소 오염이동 모델을 이용하여 알아보고 부분적인 차폐벽을 매립장 주위에 설치하였을 경우 초래되는 매립장내 침출수 누적 효과를 유한 차분 지하수흐름 모델을 이용하여 분석하였다. 분석에 사용된 입력계수는 현장에서 측정된 오염농도 자료를 이용 검증한 후 향후 30년 동안에 한강변으로 누출될 수 있는 오염농도 변화를 분석하고 매립장내 침출 수두와 확산계수의 증가가 오염물 이동에 미치는 민감도를 알아보았다. 오염이동 해석 결과 한강주변의 난지도 매립장 침출수로 인한 염소이온농도 최대값은 1488 mg/l로서 매립장 패쇄후 17년만에 이루어지는 것으로 나타났다. 매립장내 침출수위와 확산계수의 변화는 모두 침출수 이동을 촉진하나 침출수위면이 증가 할수록 침출수 농도 증가 폭은 커져가는 반면 확산계수 증가에 대한 침출수 농도 증가 폭은 작아져서 일정 농도로 수렴하는 경향을 보였다.

  • PDF

폐기물 매립지 침출수에 의한 중금속 용출에 관한 연구 (A Study on the Leaching of Heavy Metals by Municipal Solid Waste Landfill Leachate)

  • 정종관;장원;박영숙
    • 환경영향평가
    • /
    • 제6권1호
    • /
    • pp.105-110
    • /
    • 1997
  • Sanitary landfill is a general method as a final disposal of municipal solid waste(MSW), therefore leachate characteristics are very various as lime goes by because of highly concentrated organic acids are contained non biodegradable COD. So it is hard to abide by the mandatory standards of discharge eventhough applying the physicochemical and biological processes to treat the leachate. The process of treating leachate are determined by the degree of removal and components, but they are highly contained organic materials. It is a removal method to use jointly with the physicochemical process if the hard and fast rule is needed. The critical components of material are COD, ammonia, salts and heavy metals in the case of treating biologically. Biological process is to use metabolism of microorganism, therefore it is a desirable condition which heavy metals are not contained, because they acting as an inhibitor of enzyme. Of these are contained, organic decomposition and synthetic function of microorganisms decrease significantly. Consequently, this research paper lays emphasis on the concentration of heavy metals in leachate and for the purpose of forecasting the factors which are affecting the leaching of metalic waste in some degree, experimented the various reacting conditions. 1. When the concentration of heavy metals in leachate is in comparison with the level eluted after reaction, at pH 7.9 the result of reaction for PCB to CCL scrap showed that Zn, Mn, Cu was more eluted 11.6 times, 340.3 times, and 2,705.5 times respectively than the leachate undiluted solution. 2. At the condition of strong acid pH 4.7, the concentration of heavy metals in EM undiluted solution showed that Zn, Mn, Cu was more eluted 26.5 times, 147.3 times, and 3,656.3 times respectively than leachate undiluted solution. 3. When the ratio leachate to EM was 50 vs 50(V/V%), Mn was more eluted 198.7 times than leachate undiluted solution, but Zn and Cu do not show the meaningful results. 4. The color of landfill leachate was black-brown. And fulvic acid that is main ingredient of NBD COD contained, oxygen of 44~50%. For that reason, I estimated that the level of Zn, Mn, Cu was higher than the case of leachate. 5. COD of leachate from general landfill is difficult to remove. Because the solution of heavy metals is improved by the character of leachate(pH & ingredient of oxygen etc.) hence the Mn, Cu, Zn act as disturbing factor, the biochemical treatment is hard. Therefore the type of PCB & CCL scrap, iron, aluminum contained metals need to previously separate from general wastes as much as possible.

  • PDF

해안매립지에서의 추적자시험 및 수위변화특성 연구

  • 이진용;황대규;이명재;최예권;김정우;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.221-224
    • /
    • 2002
  • To demonstrate prevention of the leachate leakage out of the landfill with creating inward hydraulic gradient, a tracer test and continuous waterlevel monitoring at the Inside and outside of the barrier wall of a costal landfill were peformed. When the tracers were injected into the well outside of the vertical wall system with high water level, then they were detected at the well inside of the system with low water level. Furthermore the lowered water level at the inside of the landfill than that at the outside prevented leachate leakage out of the landfill. This study reports results of the tracer test and waterlevel monitoring.

  • PDF

Bioaugmentation Treatment of Mature Landfill Leachate by New Isolated Ammonia Nitrogen and Humic Acid Resistant Microorganism

  • Yu, Dahai;Yang, Jiyu;Teng, Fei;Feng, Lili;Fang, Xuexun;Ren, Hejun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권7호
    • /
    • pp.987-997
    • /
    • 2014
  • The mature landfill leachate, which is characterized by a high concentration of ammonia nitrogen ($NH_3$-N) and humic acid (HA), poses a challenge to biotreatment methods, due to the constituent toxicity and low biodegradable fraction of the organics. In this study, we applied bioaugmentation technology in landfill leachate degradation by introducing a domesticated $NH_3$-N and HA resistant bacteria strain, which was identified as Bacillus cereus (abbreviated as B. cereus Jlu) and Enterococcus casseliflavus (abbreviated as E. casseliflavus Jlu), respectively. The isolated strains exhibited excellent tolerant ability for $NH_3$-N and HA and they could also greatly improved the COD (chemical oxygen demand), $NH_3$-N and HA removal rate, and efficiency of bioaugmentation degradation of landfill leachate. Only 3 days was required for the domesticated bacteria to remove about 70.0% COD, compared with 9 days' degradation for the undomesticated (autochthonous) bacteria to obtain a similar removal rate. An orthogonal array was then used to further improve the COD and $NH_3$-N removal rate. Under the optimum condition, the COD removal rate in leachate by using E. casseliflavus Jlu and B. cereus Jlu increased to 86.0% and 90.0%, respectively after, 2 days of degradation. The simultaneous removal of $NH_3$-N and HA with more than 50% and 40% removal rate in leachate by employing the sole screened strain was first observed.