• 제목/요약/키워드: landfill gas.

검색결과 236건 처리시간 0.024초

음폐수 이용 기존 매립지 가스 발생 향상에 따른 온실가스 감축효과 (Greenhouse Gas Reduction Effect of Improvement of Existing Landfill Gas(LFG) Production by Using Food Waste Water)

  • 신경아;동종인;박대원;김재형;장원석
    • 에너지공학
    • /
    • 제25권3호
    • /
    • pp.104-113
    • /
    • 2016
  • 본 연구에서는 신기후체제 대비를 위한 온실가스 감축 수단으로써 신재생에너지원인 매립가스의 에너지이용 확대를 위해 현장 매립폐기물을 적용하여 음폐수 주입에 따른 메탄가스 생산량 증대 및 이에 따른 온실가스 감축효과를 분석하고자 하였다. 메탄가스 생산량 증대를 위해 주입하는 음폐수는 $35^{\circ}C$, pH 6으로 전처리한 후 사용하였고, 전처리 반응조는 타공성 담체가 고정된 상향류식 고정층 반응기를 이용하였다. 실제 매립폐기물을 이용한 pilot-scale 바이오리액터 운전결과 음폐수 주입시 강우를 활용한 대조군에 비해 6배의 매립가스 증가율을 보였으며, 평균 매립가스 발생량은 $56{\ell}/day/m^3$으로 $1m^3$ 매립지용적에서 연간 약 $20m^3$의 메탄가스가 생산 가능함을 확인하였다. 이를 에너지원으로 활용할 경우 25만 $m^3$ 이상의 중규모 매립지에 적용시 사업성이 확보될 뿐만 아니라 기 등록되어 있는 매립가스 활용 CDM 사업 및 방법론을 기준으로 폐기물 처리용량 25만 $m^3$ 규모의 매립지를 대상으로 온실가스 감축량을 산출한 결과 연간 약 4~5만 톤의 온실가스 감축효과가 있음을 확인하였다.

매립가스 발전시설의 가동률 및 발전량에 미치는 주요 영향요소 분석 (The Analysis of Main Factors Which Impact on Operation Rate and Power Production of Landfill Gas Power Plant)

  • 천승규
    • 대한환경공학회지
    • /
    • 제38권3호
    • /
    • pp.128-134
    • /
    • 2016
  • S 매립장 매립가스 발전시설을 대상으로 발전량에 미치는 주요 요소와 그 영향도를 분석하였다. 50 MWh 24시간의 정상가동 일수는 2007년부터 2014년까지의 총 운전기간 일수대비 70.9%이었으며, 실제 생산한 전력은 이론적인 최대 발전 가능량 3,428,400 MW의 79.3%이었다. 발전효율에 영향을 미치는 주요 요소는 정기점검 등이 44.0%, 황화수소로 인한 감축운전이 37.4% 그리고 공기예열기 세정 18.6% 순이었다. 그러나 황화수소 감축운전 기간이 2년인 점을 감안하면 고농도 황화수소 발생이 매립가스 발전에 가장 큰 영향을 미치고 있었다. 장기적인 발전 가능량 분석결과 매립종료 해인 2018년 35.9 MWh 이었으며 이후 지속적으로 감소하여 2028년 16.6 MWh, 2038년에는 8.4 MWh 이하가 될 것으로 예측되었다.

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

지역냉방 열원의 수요모형에 관한 연구 (A Study on the Demand Modelling for District Cooling Energy Source)

  • 김진형;최병렬
    • 자원ㆍ환경경제연구
    • /
    • 제11권4호
    • /
    • pp.633-657
    • /
    • 2002
  • This study presents a demand modelling for landfill gas, which is used as alternative energy source for district cooling business. By analyzing the cost minimizing behavior of producer facing with three alternative energy sources such as electricity, cooling heat water, and gas, a demand function for landfill gas is derived from the optimal operating time of gas fired production facility, and estimated using unpublished data, which are associated with Seoul city's development plan for Sang-am area. The estimation results repeals that Seoul City could supply the land-fill gas of 13.76 million cubic meters each year at the price of about 16 won per cubic meters. However, if the investment costs associated with installation of gas collecting facilities are treated as sunk costs, annual amount of gas supplied is expected to increase to 14.22 million cubic meters at a lower unit price of 14.76 won.

  • PDF

비위생 사용종료매립장의 심도별 토양오염도 분석 (Analysis of Soil Contamination with Depth in Non-sanitary Closed Waste Landfill)

  • 오영인;김관호;이동건;조숙희;박은숙
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1217-1224
    • /
    • 2010
  • These days, the maintenance of closed waste landfill come to the fore social problem such as legal maintenance period, after closed maintenance deposits, stability evaluation guides and environmental survey for closed landfill management. Therefore the many non-sanitary closed waste landfill has been removed by selection and transfer to sanitary landfill and incineration. When the remove the non-sanitary landfill, the pollution level of bottom soil was investigated by related government law. In this case study, the soil contamination survey was performed to evaluate the pollution level of non-sanitary closed landfill bottom soil. Based on this study, the pollution level of studied non-sanitary landfill bottom soil was content with related government law for third area(factory, parking lot, gas station, road, railroad use etc.).

  • PDF

사용종료 매립지 선별토양의 메탄 발생 분석 및 토양경작기술 적용 효과 연구 (Analysis of Methane from Screened Soil of Closed Landfill and Application of Landfarming for the Reduction of the Methane)

  • 김경;양재규;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권5호
    • /
    • pp.40-45
    • /
    • 2010
  • In this study, methane production by reuse of screened soil of landfill was estimated and the effect of application of landfarming for the reduction of methane was investigated. The study soil sampled from S closed landfill contains VS 9.8~12.8% and its BOD/COD is 0.31~0.33 which is more than three times over 0.1, the BOD/COD stabilization criteria of Ministry of Environment. The effective remediation technology for the reduction of organics of soil, landfarming was applied to the screened soil for 60 days. VS and TPH removal showed 5.2~8.3% and 67~74% respectively, and the reduction of VS until 30 day charged 70% of the total reduction. BMP test showed 27.77~30.46 mL $CH_4$/g VS and total methane production from total screened soil for remediation is expected about 260.4 $CH_4$ ton. Expected amount of methane production of the screened soil by landfarming application is 12.9 $CH_4$ ton, which shows 95% gas reduction effect and landfarming is effective for the reduction of methane production from screened soil of landfill.

Methane Oxidation in Landfill Cover Soils: A Review

  • Abushammala, Mohammed F.M.;Basri, Noor Ezlin Ahmad;Irwan, Dani;Younes, Mohammad K.
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Migration of methane ($CH_4$) gas from landfills to the surrounding environment negatively affects both humankind and the environment. It is therefore essential to develop management techniques to reduce $CH_4$ emissions from landfills to minimize global warming and to reduce the human risks associated with $CH_4$ gas migration. Oxidation of $CH_4$ in landfill cover soil is the most important strategy for $CH_4$ emissions mitigation. $CH_4$ oxidation occurs naturally in landfill cover soils due to the abundance of methanotrophic bacteria. However, the activities of these bacteria are influenced by several controlling factors. This study attempts to review the important issues associated with the $CH_4$ oxidation process in landfill cover soils. The $CH_4$ oxidation process is highly sensitive to environmental factors and cover soil properties. The comparison of various biotic system techniques indicated that each technique has unique advantages and disadvantages, and the choice of the best technique for a specific application depends on economic constraints, treatment efficiency and landfill operations.

상향류식 혐기성 생물막 여상(UBF)의 운전 특성 -침칠수 처리를 중심으로- (Operational Characteristics of UBF -Anaerobic Digestion of Landfill Leachate-)

  • 김형석;김철;성낙창
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.49-54
    • /
    • 1996
  • The anaerobic landfill leachate treatment can surmount dilution problem of high concentration landfill leachate, collect methane gas as byproduct, and treat low phosphate concentration leachate because of low nutrient salt requirement. The problems of conventional anaerobic treatment that are requirement of large reactor because of low microbial growth rate(HRT=20-30 days) and low volumetric loading rate(VLR=0.5-2.0 kg $COD/m^3\cdot day$) are able to surmount by introduction of high rate anaerobic treatment. In this study, the upflow blanket filter(UBF) which is high rate anaerobic process was applyed to the landfill leachate treatment. The acceptable volumetric loading rate and HRT were 18.23 kg $SCOD/m^3\cdot day$ and 13 hrs. SCOD removal rate was over 90% at VLR 18.23 kg $SCOD/m^3\cdot day$. The methane gas yield was $0.15 lCH_4/g$ SCOD added(at STP) at VLR 18.23 kg $SCOD/m^3\cdot day$. The solids accumulation yield was 0.40 g VSS/g COD removed.

  • PDF

매립가스 발생량 및 폐기물 안정화 촉진을 위한 메탄생성균 활성 침출수 재순환 공법에 관한 연구 (A Study on Methanogenic Bacteria-Activated Leachate Recirculation Method for Enhancing Waste Stabilization and Landfill Gas Production from a Solid waste Landfill)

  • 박진규;강정희;정용길;이남훈
    • 유기물자원화
    • /
    • 제20권2호
    • /
    • pp.66-75
    • /
    • 2012
  • 본 연구에서는 폐기물매립지에서 매립가스 및 폐기물 안정화 촉진을 위한 메탄생성균 활성 침출수 재순환 공법의 효과를 평가하였다. 기존 매립공법(Lys-A), 침출수 재순환 공법(Lys-B), ASBR 전처리 후 침출수 재순환 공법(Lys-C, Lys-D)을 묘사하기 위해 4개의 모의매립조를 만들어 4년 이상 운영하였다. Lys-D는 전처리된 침출수의 재순환 양을 Lys-C의 2배로 하였다. 침출수 재순환 공법과 ASBR 전처리 후 침출수 재순환 공법의 경우 600일까지 메탄발생량이 증가하였으나 600일 이후에는 침출수 재순환이 메탄발생량 증가에 미치는 영향은 거의 없는 것으로 나타났다. 이는 분해 가능한 유기물질이 부족할 경우 침출수의 재순환 효과가 없기 때문으로 판단된다. Lys-C와 Lys-D는 폐기물의 안정화촉진 뿐만 아니라 누적메탄수율도 가장 높은 것으로 나타났다. 누적메탄수율의 경우 Lys-C(35.51 mL $CH_4/g$ VS)와 Lys-D(36.12 mL $CH_4/g$ VS)는 Lys-A(28.37 mL $CH_4/g$ VS)와 Lys-B(30.07 mL $CH_4/g$ VS)보나 높게 나타났다. 침출수 재순환율이 동일한 Lys-B와 Lys-C의 경우 Lys-C의 COD 농도가 Lys-B보다 더욱 빠르게 감소하였다. 이는 메탄생성균 활성 침출수에 의해 저해물질의 희석뿐만 아니라 메탄생성균의 존재에 기인하는 것으로 사료된다. 따라서 ASBR 전처리 후 침출수 재순환 공법은 폐기물 안정화 및 매립가스 증대에 가장 적합한 것으로 판단된다.

비위생매립지 복원사업을 위한 지반환경특성 정밀조사 (Investigation of Abandoned Waste Landfill for Rehabilitation)

  • 정하익;김상근;유준;이용수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.475-482
    • /
    • 2004
  • The purpose of this paper is to study on the investigation of abandoned waste landfill for rehabilitation. The geotechnical and environmental field and laboratory tests for wastes dumped at municipal site were carried out. Testing wastes were sampled at the illegal landfill site The various samples such as waste. soil, groundwater, gas, leachate were taken in the landfill site. As a result of this study, the engineering properties and concentration of samples were investigated The result of this study was used for introduction the rehabilitation method and treatment of unregulated closed landfill.

  • PDF