• Title/Summary/Keyword: land-cover identification

Search Result 21, Processing Time 0.02 seconds

Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province (경기도 북부지역 군용 사격장 토양에 존재하는 화약물질 분포 및 이동 특성 조사)

  • Bae, Bumhan;Park, Jieun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.17-29
    • /
    • 2014
  • A remedial investigation was conducted at five military training ranges in northern Gyeonggi province to collect information necessary for the design of on-site treatment facilities for the abatement of explosive compounds release to the environment. These information includes (i) identification of dominant explosive compounds in each range, (ii) discharge/migration routes, and (iii) contaminant distribution in particle size fraction and settling velocity of the soils. The results of investigation showed that TNT and RDX are the major contaminants but the extent of contamination varied depending on the types of military training practices and topography of the site. RDX was also detected in the subsurface soil and in the nearby stream within the training ranges, suggesting release of contaminants to streams. The median concentrations of explosives in the surface soil were less than 20 mg/kg despite several 'hot spots' in which explosives concentrations often exceeds several hundred mg/kg. The average clay contents in the soil of target area was less than 5 % compared to 12 % in the control, indicating loss of smaller particles by surface runoff during rainfall due to lack of vegetative land cover. Analysis of explosive compounds and particle size distribution showed that the amount of explosive compounds in soil particles smaller than 0.075 mm was less than 10 % of the total. Settling column tests also revealed that the quantity of explosive compounds in the liquid phase of the effluent was greater than that in the solid phase. Therefore, pre-treatment of particulate matter in surface runoff of shooting range with a simple settling basin and subsequent effluent treatment with planted constructed wetlands as polishing stage for explosives in the aqueous phase would provide the shooting ranges with a self-standing, sustainable, green solution.