• Title/Summary/Keyword: land use and land cover

Search Result 519, Processing Time 0.027 seconds

Evaluation of a Land Use Change Matrix in the IPCC's Land Use, Land Use Change, and Forestry Area Sector Using National Spatial Information

  • Park, Jeongmook;Yim, Jongsu;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.295-304
    • /
    • 2017
  • This study compared and analyzed the construction of a land use change matrix for the Intergovernmental Panel on Climate Change's (IPCC) land use, land use change, and forestry area (LULUCF). We used National Forest Inventory (NFI) permanent sample plots (with a sample intensity of 4 km) and permanent sample plots with 500 m sampling intensity. The land use change matrix was formed using the point sampling method, Level-2 Land Cover Maps, and forest aerial photographs (3rd and 4th series). The land use change matrix using the land cover map indicated that the annual change in area was the highest for forests and cropland; the cropland area decreased over time. We evaluated the uncertainty of the land use change matrix. Our results indicated that the forest land use, which had the most sampling, had the lowest uncertainty, while the grassland and wetlands had the highest uncertainty and the least sampling. The uncertainty was higher for the 4 km sampling intensity than for the 500 m sampling intensity, which indicates the importance of selecting the appropriate sample size when constructing a national land use change matrix.

Comparison of Land-use Change Assessment Methods for Greenhouse Gas Inventory in Land Sector (토지부문 온실가스 통계 산정을 위한 토지이용변화 평가방법 비교)

  • Park, Jin-Woo;Na, Hyun-Sup;Yim, Jong-Su
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.329-337
    • /
    • 2017
  • In this study, land-use changes from 1990 to 2010 in Jeju Island by different approaches were produced and compared to suggest a more efficient approach. In a sample-based method, land-use changes were analyzed with different sampling intensities of 2 km and 4 km grids, which were distributed by the fifth National Forest Inventory (NFI5), and their uncertainty was assessed. When comparing the uncertainty for different sampling intensities, the one with the grid of 2 km provided more precise information; ranged from 6.6 to 31.3% of the relative standard error for remaining land-use categories for 20 years. On the other hand, land-cover maps by a wall-to-wall approach were produced by using time-series Landsat imageries. Forest land increased from 34,194 ha to 44,154 ha for 20 years, where about 69% of total forest land were remained as forest land and 19% and 8% within forest lands were converted to grassland and cropland, respectively. In the case of grassland, only about 40% of which were remained as grassland and most of the area were converted to forest land and cropland. When comparing land-cover area by land-use categories with land-use statistics, forest areas were underestimated while areas of cropland and grassland were overestimated. In order to analyze land use change, it is necessary to establish a clear and consistent definition on the six land use classification.

The Spatial-temporal Changes of the Land use/cover in the Dongting lake Area of Central China during the Last Decade

  • Rendong, Li;Hongzhi, Wang;Dafang, Zhuang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.417-419
    • /
    • 2003
  • Based on the Chinese resource and environment database, and using the Landsat TM and ETM data acquired in 1990 and 2000 respectively, the spatial-temporal characteristics of land use/cover changes in the Dongting lake area of central China was analyzed. The result showed that cultivated land decreased by 0.57% of total cultivated land. Built -up land and water area expanded, with an increase of 8.97% and 0.43% respectively. 94 percent of the cropland decreased was changed into water (mostly to fishpond) and built-up areas. Land-use changed most quickly in cities, and the slowest in the north and east of the study area.

  • PDF

Prediction of Land-cover Changes and Analysis of Paddy Fields Changes Based on Climate Change Scenario (A1B) in Agricultural Reservoir Watersheds (기후변화 시나리오 (A1B)에 따른 농업용 저수지 유역의 미래 토지피복변화 예측 및 논 면적 변화 특성 분석)

  • Oh, Yun-Gyeong;Yoo, Seung-Hwan;Lee, Sang-Hyun;Park, Na-Young;Choi, Jin-Yong;Yun, Dong-Koun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.77-86
    • /
    • 2012
  • This study was aim to predict future land-cover changes and to analyze regional land-cover changes in irrigation areas and agricultural reservoir watersheds under climate change scenario. To simulate the future land-cover under climate change scenario - A1B of the SRES (Special Report on Emissions Scenarios), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation to socioeconomic and biophysical driving factors. For the study areas, 8 agricultural reservoirs were selected from 8 different provinces covering all around nation. The simulation results from 2010 to 2100 suggested future land-cover changes under the scenario conditions. For Madun reservoir in Gyeonggi-do, total decrease amount of paddy area was a similar amount of 'Base demand scenario' of Water Vision 2020 published by MLTMA (Ministry of Land, Transport and Maritime Affairs), while the decrease amounts of paddy areas in other sites were less than the amount of 'High demand scenario' of Water Vision 2020. Under A1B scenario, all the land-cover results showed only slight changes in irrigation areas of agricultural reservoirs and most of agricultural reservoir watersheds will be increased continuously for forest areas. This approach could be useful for evaluating and simulating agricultural water demand in relation to land-use changes.

The impact of land use and land cover changes on land surface temperature in the Yangon Urban Area, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • Yangon Mega City is densely populated and most urbanization area of Myanmar. Rapid urbanization is the main causes of Land Use and Land Cover (LULC) change and they impact on Land Surface Temperature (LST). The objectives of this study were to investigate on the LST with respect to LULC of Yangon Mega City. For this research, Landsat satellite images of 1996, 2006 and 2014 of Yangon Area were used. Supervised classification with the region of interest and calculated change detection. Ground check points used 348 points for accuracy assessment. The overall accuracy indicated 89.94 percent. The result of this paper, the vegetation area decreased from $1061.08sq\;km^2$ (24.5%) in 1996 to $483.53sq\;km^2$ (11.2%) in 2014 and built up area clearly increased from $485.33sq\;km^2$ (11.2%) in 1996 to $1435.72sq\;km^2$ (33.1%) in 2014. Although the land surface temperature was higher in built up area and bare land, lower value in cultivated land, vegetation and water area. The results of the image processing pointed out that land surface temperature increased from $23^{\circ}C$, $26^{\circ}C$ and $27^{\circ}C$ to $36^{\circ}C$, $42^{\circ}C$ and $43.3^{\circ}C$ for three periods. The findings of this paper revealed a notable changes of land use and land cover and land surface temperature for the future heat management of sustainable urban planning for Yangon Mega city. The relationship of regression experienced between LULC and LST can be found gradually stronger from 0.8323 in 1996, 0.8929 in 2006 and 0.9424 in 2014 respectively.

Contribution to the Development of Global Land Related Dataset from Asia

  • Tateishi, Ryutaro
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.116-121
    • /
    • 1998
  • Global land related datasets such as land use, land cover, vegetation cover percentage, forest cover percentage, are part of important global geospatial environmental datasets for global change studies. Since land cover varies place by place, continental production of dataset is a usual approach. Western academically developed countries have some projects to describe land cover related information in digital form using remote sensing technology in African, American continent and Oceania. In this paper, the author introduce his initiative to coordinate Asian scientists in order to develop land related dataset of Asia for our better understanding of the environment of Asia and for contribution to the development of global dataset. This paper explains activities by Land Cover Working Group (LCWG) of the Asian Association on Remote Sensing(AARS), Data and Information System(DIS) sub-committee of Japan national committee for the International Geosphere and Biosphere Program(IGBP), and the International Society for Photogrammetry and Remote Sensing(ISPRS) Working Group IV/6 on Global databases supporting environmental monitoring.

  • PDF

Using Tower Flux Data to Assess the Impact of Land Use and Land Cover Change on Carbon Exchange in Heterogeneous Haenam Cropland (비균질한 해남 농경지의 탄소교환에 미치는 토지사용 및 피복변화의 영향에 대한 미기상학 자료의 활용에 관하여)

  • Indrawati, Yohana Maria;Kang, Minseok;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.30-31
    • /
    • 2013
  • Land use and land cover change (LULCC) due to human activities directly affects natural systems and contributes to changes in carbon exchange and climate through a range of feedbacks. How land use and land cover changes affect carbon exchanges can be assessed using multiyear measurement data from micrometeorological flux towers. The objective of the research is to assess the impact of land use and land cover change on carbon exchange in a heterogeneous cropland area. The heterogeneous cropland area in Haenam, South Korea is also subjected to a land conversion due to rural development. Therefore, the impact of the change in land utilization in this area on carbon exchange should be assessed to monitor the cycle of energy, water, and carbon dioxide between this key agricultural ecosystem and the atmosphere. We are currently conducting the research based on 10 years flux measurement data from Haenam Koflux site and examining the LULCC patterns in the same temporal scale to evaluate whether the LULCC in the surrounding site and the resulting heterogeneity (or diversity) have a significant impact on carbon exchange. Haenam cropland is located near the southwestern coast of the Korean Peninsula with land cover types consisting of scattered rice paddies and various croplands (seasonally cultivated crops). The LULCC will be identified and quantified using remote sensing satellite data and then analyzing the relationships between LULCC and flux footprint of $CO_2$ from tower flux measurement. We plan to calculate annual flux footprint climatology map from 2003 to 2012 from the 10 years flux observation database. Eventually, these results will be used to quantify how the system's effective performance and reserve capacity contribute to moving the system towards more sustainable configuration. Broader significance of this research is to understand the co-evolution of the Haenam agricultural ecosystem and its societal counterpart which are assumed to be self-organizing hierarchical open systems.

  • PDF

Land Surface Temperature Dynamics in Response to Changes in Land Cover in An-Najaf Province, Iraq

  • Ebtihal Taki, Al-Khakani;Watheq Fahem, Al-janabi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.99-110
    • /
    • 2023
  • Land surface temperature (LST) is a critical environmental indicator affected by land cover (LC) changes. Currently, the most convenient and fastest way to retrieve LST is to use remote sensing images due to their continuous monitoring of the Earth's surface. The work intended to investigate land cover change and temperature response inAn-Najaf province. Landsat multispectral imageries acquired inAugust 1989, 2004, and 2021 were employed to estimate land cover change and LST responses. The findings exhibited an increase in water bodies, built-up areas, plantations, and croplands by 7.78%, 7.27%, 6.98%, 3.24%, and 7.78%, respectively, while bare soil decreased by 25.27% for the period (1989-2021). This indicates a transition from barren lands to different land cover types. The contribution index (CI) was employed to depict how changes in land cover categories altered mean region surface temperatures. The highest LSTs recorded were in bare lands (42.2℃, 44.25℃, and 46.9℃), followed by built-up zones (41.6℃, 43.96℃, and 44.89℃), cropland (30.9℃, 32.96℃, and 34.76℃), plantations (35.4℃, 36.97℃, and 38.92℃), and water bodies (27.3℃, 29.35℃, and 29.68℃) respectively, in 1989, 2004, and 2021. Consequently, these changes resulted in significant variances in LST between different LC types.

A STUDY ON IDENTIFICATION OF URBAN CHARACTERISTIC USING SPATIAL ARRANGEMENT METHOD

  • Chou, Tien-Yin;Kuo, Ching-Yi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.984-987
    • /
    • 2003
  • In order to rapidly catch up urban region’s detailed land-use or land-cover information; this research used the post-classification algorithm (Spatial Reclassification Kernel: SPARK) to create a land-use map of Taichung City. We discussed the urban land-use classification model with the IKONOS images. The conclusions may be distinguished as follows:(a) Using the Maximum-Likelihood algorithm to classify seven broad land-cover categories. The overall accuracy in this stage achieves 92.72% and Kappa coefficient will be obtained 0.91; and (b) Using the SPARK method to classify images for detect the land-use, the overall accuracy achieves higher 89.64% and Kappa coefficient will be 0.86. To conclude, the research process in this study can fully and carefully describe local land-use pattern and assist the demand of land management and resources planning reference.

  • PDF

Spatial and temporal dynamic of land-cover/land-use and carbon stocks in Eastern Cameroon: a case study of the teaching and research forest of the University of Dschang

  • Temgoua, Lucie Felicite;Solefack, Marie Caroline Momo;Voufo, Vianny Nguimdo;Belibi, Chretien Tagne;Tanougong, Armand
    • Forest Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2018
  • This study was carried out in the teaching and research forest of the University of Dschang in Belabo, with the aim of analysing land-cover and land-use changes as well as carbon stocks dynamic. The databases used are composed of three Landsat satellite images (5TM of 1984, 7ETM + of 2000 and 8OLI of 2016), enhanced by field missions. Satellite images were processed using ENVI and ArcGIS software. Interview, focus group discussion methods and participatory mapping were used to identify the activities carried out by the local population. An inventory design consisting of four transects was used to measure dendrometric parameters and to identify land-use types. An estimation of carbon stocks in aboveground and underground woody biomass was made using allometric models based on non-destructive method. Dynamic of land-cover showed that the average annual rate of deforestation is 0.48%. The main activities at the base of this change are agriculture, house built-up and logging. Seven types of land-use were identified; adult secondary forests (64.10%), young secondary forests (7.54%), wetlands (7.39%), fallows (3.63%), savannahs (9.59%), cocoa farms (4.28%) and mixed crop farms (3.47%). Adult secondary forests had the highest amount of carbon ($250.75\;t\;C\;ha^{-1}$). This value has decreased by more than 60% for mixed crop farms ($94.67\;t\;C\;ha^{-1}$), showing the impact of agricultural activities on both forest cover and carbon stocks. Agroforestry systems that allow conservation and introduction of woody species should be encouraged as part of a participatory management strategy of this forest.