• 제목/요약/키워드: land remote sensing

검색결과 1,066건 처리시간 0.021초

저고도 원격탐사 영상 분석을 통한 수륙경계선 추출 (Extraction of Waterline Using Low Altitude Remote Sensing)

  • 정다운;이종석;백지연;조영헌
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.337-349
    • /
    • 2020
  • 본 연구에서는 저고도 원격탐사 기구인 Helikite를 이용하여 연안지역의 영상을 획득하였다. 그리고 획득된 영상에서 4 종류의 영역 분할 알고리즘을 이용하여 육지와 수괴의 영역을 분할해 낸 후 경계 검출법을 이용해 수륙경계선을 추출하였다. 실측데이터의 부재로 정량적인 비교는 불가능했으나, 수괴와 육지의 구분이 비교적 명확한 적외선(Infrared band) 영역의 영상을 기준으로 각 알고리즘들에 의해 추출된 수륙경계선을 비교하였다. 그 결과, 영상에서 수괴와 육지의 구분이 모호한 부분에서 각각의 알고리즘의 결과가 크게 차이가 나는 것을 발견할 수 있었다. 이는 각 알고리즘이 영역을 구분하는데 사용되는 영상의 수치값(Digital number)의 임계치를 선정하는 과정에서 생긴 차이라고 판단된다. 이와 같이 다양한 알고리즘을 통한 수륙경계선의 추출은 향후 연속 모니터링이 가능한 자동 관측시스템과 함께 활용하여 고정지역에서 얻은 수년의 장기간의 데이터를 통해 연안 지역 형태의 급격한 변화를 설명하는데 도움을 줄 것으로 기대된다.

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

다중시기 Sentinel-2 위성영상과 일강수량 자료를 활용한 집중호우 전후의 토지피복별 원격탐사지수 변화 분석 (Analysis on the Changes of Remote Sensing Indices on Each Land Cover Before and After Heavy Rainfall Using Multi-temporal Sentinel-2 Satellite Imagery and Daily Precipitation Data)

  • 김경섭;문갑수;정윤재
    • 한국지리정보학회지
    • /
    • 제23권2호
    • /
    • pp.70-82
    • /
    • 2020
  • 최근 도시홍수에 의해 많은 피해가 발생하고 있으며, 단시간에 국지적으로 발생하는 집중호우가 1차 원인으로 꼽히고 있다. 도시홍수의 피해는 도시지역 내 물수지의 변화로 규명하고 있으며, 이를 간접적으로 파악하기 위해 일강수량 자료와 다중시기 Sentinel-2 위성영상을 활용해 집중호우 전후의 토지피복별 원격탐사지수 변화를 분석하였다. 일강수량 자료를 바탕으로 호우주의보 및 경보의 사례를 선정하였고, 해당 기간의 Sentinel-2 위성영상을 취득해 이를 기상청 서울관측소 기준 반경 1,000m 범위의 정규식생지수(NDVI), 정규수분지수(NDWI) 및 정규습윤지수(NDMI) 영상을 토지피복별로 제작하여 통계적 변화를 비교하였다. 각 영상을 구성하고 있는 픽셀의 최댓값, 최솟값, 평균 및 그 증감을 분석한 결과, 집중호우 전후 도시지역 원격탐사지수에 유의미한 변화가 발생한 것으로 보기는 힘들다고 판단하였다.

원격탐사(RS) 기법을 이용한 충북지역 5개 토양과 갯벌토양의 분광반사특성 (Spectral Reflectance Characteristics for Five Soils at Chungbuk Prefecture and Tideland Soil Using Remote Sensing Technology)

  • 박종화;신용희;이상혁
    • 한국환경복원기술학회지
    • /
    • 제6권1호
    • /
    • pp.34-40
    • /
    • 2003
  • The deterioration of agricultural environment, which is characterized by dryness and desertification of land, is one of the main reasons which explain the recent decrease of land productivity. To solve these environmental problems, it is very important to make clear the mechanism between soil, water, vegetation and temperature. The main objective of this study is to provide a soil surface information, which represent a soil reflectance spectrum, by remote sensing technology. The soil reflectance of the soil was measured using a spectro-radiometer in the wavelength range from 300nm to 1100nm. The results suggest that the reflectance properties of soils are related to their mineral composition and soil moisture. Increasing soil moisture resulted in an decrease in the rate of reflectance which leads to parallel curves of soil reflectance spectra.

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • 대한원격탐사학회지
    • /
    • 제31권4호
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data

  • Jung, Jinha;Pijanowski, Bryan
    • 대한원격탐사학회지
    • /
    • 제28권6호
    • /
    • pp.661-670
    • /
    • 2012
  • Urban forests provide great ecosystem services to population in metropolitan areas even though they occupy little green space in a huge gray landscape. Unfortunately, urbanization inherently results in threatening the green infrastructure, and the recent urbanization trends drew great attention of scientists and policy makers on how to preserve or restore green infrastructure in metropolitan area. For this reason, mapping the spatial distribution of the green infrastructure is important in urban environments since the resulting map helps us identify hot green spots and set up long term plan on how to preserve or restore green infrastructure in urban environments. As a preliminary step for mapping green infrastructure utilizing multi-source remote sensing data in urban environments, the objective of this study is to map vegetation volume by fusing LiDAR and multispectral data in urban environments. Multispectral imageries are used to identify the two dimensional distribution of green infrastructure, while LiDAR data are utilized to characterize the vertical structure of the identified green structure. Vegetation volume was calculated over the metropolitan Chicago city area, and the vegetation volume was summarized over 16 NLCD classes. The experimental results indicated that vegetation volume varies greatly even in the same land cover class, and traditional land cover map based above ground biomass estimation approach may introduce bias in the estimation results.

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Development of a Drought Detection Indicator using MODIS Thermal Infrared Data

  • Park, Sun-Yurp
    • 대한원격탐사학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Based on surface energy balance climatology, surface temperatures should respond to drying conditions well before plant response. To test this hypothesis, land surface temperatures (LST) derived from MODIS data were analyzed to determine how the data were correlated with climatic water balance variables and NDVI anomalies during a growing season in Western and Central Kansas. Daily MODIS data were integrated into weekly composites so that each composite data set included the maximum temperature recorded at each pixel during each composite period. Time-integrated, or cumulative values of the LST deviation standardized with mean air temperatures had significantly high correlation coefficients with SM, AE/PE, and MD/PE, ranging from 0.65 to 0.89. The Standardized Thermal Index (STI) is proposed in this study to accomplish the objective. The STI, based on surface temperatures standardized with observed mean air temperatures, had significant temporal relationships with the hydroclimatological factors. STI classes in all the composite periods also had a strong correlation with NDVI declines during a drought episode. Results showed that, based on LST, air temperature observations, and water budget analysis, NDVI declines below normal could be predicted as early as 8 weeks in advance in this study area.

Analysis of Land Cover Changes Based on Classification Result Using PlanetScope Satellite Imagery

  • Yoon, Byunghyun;Choi, Jaewan
    • 대한원격탐사학회지
    • /
    • 제34권4호
    • /
    • pp.671-680
    • /
    • 2018
  • Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.

Assessment of Future Climate Change Impact on DAM Inflow using SLURP Hydrologic Model and CA-Markov Technique

  • Kim, Seong-Joon;Lim, Hyuk-Jin;Park, Geun-Ae;Park, Min-Ji;Kwon, Hyung-Joong
    • 대한원격탐사학회지
    • /
    • 제24권1호
    • /
    • pp.25-33
    • /
    • 2008
  • To investigate the hydrologic impacts of climate changes on dam inflow for Soyanggangdam watershed $(2694.4km^2)$ of northeastern South Korea, SLURP (Semi-distributed Land Use-based Runoff Process) model and the climate change results of CCCma CGCM2 based on SRES A2 and B2 were adopted. By the CA-Markov technique, future land use changes were estimated using the three land cover maps (1985, 1990, 2000) classified by Landsat TM satellite images. NDVI values for 2050 and 2100 land uses were estimated from the relationship of NDVI-Temperature linear regression derived from the observed data (1998-2002). Before the assessment, the SLURP model was calibrated and verified using 4 years (1998-2001) dam inflow data with the Nash-Sutcliffe efficiencies of 0.61 to 0.77. In case of A2 scenario, the dam inflows of 2050 and 2100 decreased 49.7 % and 25.0 % comparing with the dam inflow of 2000, and in case of B2 scenario, the dam inflows of 2050 and 2100 decreased 45.3 % and 53.0 %, respectively. The results showed that the impact of land use change covered 2.3 % to 4.9 % for the dam inflow change.