• Title/Summary/Keyword: land remote sensing

Search Result 1,071, Processing Time 0.022 seconds

Development of Distributed Ecohydrologic Model and Its Application to the Naeseong Creek Basin (분포형 생태수문모형 개발 및 내성천 유역에의 적용)

  • Choi, Daegyu;Kim, In-Hwan;Kim, Jeongsook;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1053-1067
    • /
    • 2013
  • Distributed ecohydrological model which can simulate hydrological components, vegetation and landsurface temperature using practically available input and observed data with minimum parameters is introduced. This model is designed to properly simulate in area with lack of observed data. Parameter estimation and calibration of the model can be carried out with indirectly estimated data (monthly surface runoff by NRCS-CN method and annual actual vaporization by empirical equation) and remote sensing data (NDVI, LST) instead of observed data. We applied this model in the Naeseong creek basin to evaluate the model validity. Firstly, we found the sensitive parameters which largely influence the simulation results by sensitivity analysis, and then hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature were simulated over 10 years (2001 to 2010) using calibrated parameters. Parameters are estimated by optimization method. It is shown that most of grids are well simulated. In the case of streamflow and water temperature, we checked two observed points in the outlet of watershed and it is shown that streamflow and water temperature are properly simulated as well. Hence, it can be shown that this model properly simulate the hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature as well, even though in despite of using limited input data and minimum parameters.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Detection of the Coastal Wetlands Using the Sentinel-2 Satellite Image and the SRTM DEM Acquired in Gomsoman Bay, West Coasts of South Korea (Sentinel-2 위성영상과 SRTM DEM을 활용한 연안습지 탐지: 서해안 곰소만을 사례로)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, Insun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.52-63
    • /
    • 2021
  • In previous research, the coastal wetlands were detected by using the vegetation indices or land cover classification maps derived from the multispectral bands of the satellite or aerial imagery, and this approach caused the various limitations for detecting the coastal wetlands with high accuracy due to the difficulty of acquiring both land cover and topographic information by using the single remote sensing data. This research suggested the efficient methodology for detecting the coastal wetlands using the sentinel-2 satellite image and SRTM(Shuttle Radar Topography Mission) DEM (Digital Elevation Model) acquired in Gomsoman Bay, west coasts of South Korea through the following steps. First, the NDWI(Normalized Difference Water Index) image was generated using the green and near-infrared bands of the given Sentinel-2 satellite image. Then, the binary image that separating lands and waters was generated from the NDWI image based on the pixel intensity value 0.2 as the threshold and the other binary image that separating the upper sea level areas and the under sea level areas was generated from the SRTM DEM based on the pixel intensity value 0 as the threshold. Finally, the coastal wetland map was generated by overlaying analysis of these binary images. The generated coastal wetland map had the 94% overall accuracy. In addition, the other types of wetlands such as inland wetlands or mountain wetlands were not detected in the generated coastal wetland map, which means that the generated coastal wetland map can be used for the coastal wetland management tasks.

Analysis of Drought Damage around Tonlé Sap which is Largest Lake in Southeast Asia (동남아시아 최대 호수인 톤레사프호 주변 가뭄피해 분석)

  • Lee, Jong Sin;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.5
    • /
    • pp.961-969
    • /
    • 2017
  • Today, the world is experiencing a variety of natural disasters due to the extreme weather. Drought that occurred throughout Southeast Asia from February to May 2016 is also a form of abnormal climate. As a result of this drought, five countries, including Cambodia, Thailand, Vietnam, Laos and Myanmar, faced food shortages, food shortages, as well as rice yields for export. In this study, remote sensing technique was applied to the vicinity of Tonlé Sap, the largest lake in Southeast Asia, to quantitatively analyze the damage caused by drought. As a result, the change of land cover caused a drastic decrease in the water system (132.582㎢) and greenery (706.937㎢) in February 2016, and the reduced water system and greenery changed to dry land and paddy field. It was also found that the temperature rise of 6℃ ~ 8 ℃ compared to the previous year due to the drought from February to April 2016 due to the change of the surface temperature. And it was found that the function of the lake was deteriorated in April due to continuous drought.

Changes in the Riverbed Landforms Due to the Artificial Regulation of Water Level in the Yeongsan River (인위적인 보 수위조절로 인한 영산강 하도 지형 변화)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • A river bed which is submerged in water at high flow and becomes part of the river at low flow, serves as a bridge between the river and the land. The channel bar creates a unique ecosystem with vegetation adapted to the particular environment and the water pool forms a wetland that plays a very important role in the environment. To evaluate anthropogenic impacts on the river bed in the Middle Yeongsangang River, the fluvial landforms in the stream channel were analyzed using multi-temporal remotely-sensed images. In the aerial photograph of 2005 taken before the construction of the large weirs, oxbow lakes, mid-channel bars, point bars, and natural wetlands between the artificial levees were identified. Multiple bars divided the flow of stream water to cause the braided pattern in a particular section. After the construction of the Seungchon weir, aerial photographs of 2013 and 2015 revealed that most of the fluvial landforms disappeared due to the dredging of its riverbed and water level control(maintenance at 7.5El.m). Sentinel-2 images were analyzed to identify differences between before and after the opening of weir gate. Change detection was performed with the near infrared and shortwave infrared spectral bands to effectively distinguish water surfaces from land. As a result, water surface area of the main stream of the Yeongsangang River decreased by 40% from 1.144km2 to 0.692km2. A large mid-channel bar that has been deposited upstream of the weir was exposed during low water levels, which shows the obvious influence of weir on the river bed. Newly formed unvegetated point bars that were deposited on the inside of a meander bend were identified from the remotely sensed images. As the maintenance period of the weir gate opening was extended, various habitats were created by creating pools and riffles around the channel bars. Considering the ecological and hydrological functions of the river bed, it is expected that the increase in bar areas through weir gate opening will reduce the artificial interference effect of the weir.

Mapping Burned Forests Using a k-Nearest Neighbors Classifier in Complex Land Cover (k-Nearest Neighbors 분류기를 이용한 복합 지표 산불피해 영역 탐지)

  • Lee, Hanna ;Yun, Konghyun;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.883-896
    • /
    • 2023
  • As human activities in Korea are spread throughout the mountains, forest fires often affect residential areas, infrastructure, and other facilities. Hence, it is necessary to detect fire-damaged areas quickly to enable support and recovery. Remote sensing is the most efficient tool for this purpose. Fire damage detection experiments were conducted on the east coast of Korea. Because this area comprises a mixture of forest and artificial land cover, data with low resolution are not suitable. We used Sentinel-2 multispectral instrument (MSI) data, which provide adequate temporal and spatial resolution, and the k-nearest neighbor (kNN) algorithm in this study. Six bands of Sentinel-2 MSI and two indices of normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as features for kNN classification. The kNN classifier was trained using 2,000 randomly selected samples in the fire-damaged and undamaged areas. Outliers were removed and a forest type map was used to improve classification performance. Numerous experiments for various neighbors for kNN and feature combinations have been conducted using bi-temporal and uni-temporal approaches. The bi-temporal classification performed better than the uni-temporal classification. However, the uni-temporal classification was able to detect severely damaged areas.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Measurement and Quality Control of MIROS Wave Radar Data at Dokdo (독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리)

  • Jun, Hyunjung;Min, Yongchim;Jeong, Jin-Yong;Do, Kideok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Wave observation is widely used to direct observation method for observing the water surface elevation using wave buoy or pressure gauge and remote-sensing wave observation method. The wave buoy and pressure gauge can produce high-quality wave data but have disadvantages of the high risk of damage and loss of the instrument, and high maintenance cost in the offshore area. On the other hand, remote observation method such as radar is easy to maintain by installing the equipment on the land, but the accuracy is somewhat lower than the direct observation method. This study investigates the data quality of MIROS Wave and Current Radar (MWR) installed at Dokdo and improve the data quality of remote wave observation data using the wave buoy (CWB) observation data operated by the Korea Meteorological Administration. We applied and developed the three types of wave data quality control; 1) the combined use (Optimal Filter) of the filter designed by MIROS (Reduce Noise Frequency, Phillips Check, Energy Level Check), 2) Spike Test Algorithm (Spike Test) developed by OOI (Ocean Observatories Initiative) and 3) a new filter (H-Ts QC) using the significant wave height-period relationship. As a result, the wave observation data of MWR using three quality control have some reliability about the significant wave height. On the other hand, there are still some errors in the significant wave period, so improvements are required. Also, since the wave observation data of MWR is different somewhat from the CWB data in high waves of over 3 m, further research such as collection and analysis of long-term remote wave observation data and filter development is necessary.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.