• Title/Summary/Keyword: land deformation

Search Result 107, Processing Time 0.026 seconds

A Study on the D-InSAR Method for Micro-deformation Monitoring in Railway Facilities (철도시설물 미소변형 모니터링을 위한 D-InSAR 기법 연구)

  • Kim, Byung-Kyu;Lee, Changgil;Kim, Winter;Yoo, Mintaek;Lee, Ilhwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.43-54
    • /
    • 2022
  • The settlement at the railroad foundation is often the leading cause of track irregularity and potential derailment. The control of such deformation is considered necessary in track maintenance practice. Nevertheless, the monitoring process performed by in situ surveying requires an excessive amount of manpower and cost. The InSAR, a remote sensing technique by RADAR satellite, is used to overcome such a burden. The PS-InSAR technique is preferred for a long-term precise monitoring method. However, this study aims to obtain relatively brief analysis results from only two satellite images using the D-InSAR technique, while a minimum of 25 images are required for PS-InSAR. This study verifies the precision of D-InSAR within a few millimeters by inspecting railroad facilities and land settlements in Korea Railroad Research Institute's test track with images from TerraSAR-X Satellite. Multiple corner reflectors were adopted and installed on an embankment and the building roof to raise the surface reflectivity. Those reflectors were slightly adjusted periodically to verify the detecting performance. The results revealed the optimum distance between corner reflectors. Further, the deformation of railway tracks, slopes, and concrete structures was analyzed successively. In conclusion, this study indicates that the D-InSAR technique effectively monitors the short-term deformation of a broad area such as railway structures.

Tectonic Movement in the Korean Peninsula (II): A Geomorphological Interpretation of the Spatial Distribution of Earthquakes (한반도의 지반운동 (II): 한반도 지진분포의 지형학적 해석)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.488-505
    • /
    • 2007
  • The purposes of this research are twofold; 1) to verify spatial differences of tectonic movement using the spatial distribution of earthquakes, and 2) to infer mechanisms that generate spatial accumulation patterns of earthquakes in the Korean Peninsula. The first part of this sequential paper (Park, 2007) argues that the Korean Peninsula consists of four geostructural regions in which tectonic deformation and consequent geomorphological development patterns are different from each other Since this conclusion has been made by terrain analyses alone, it is necessary to verify this suggestion using other independent geophysical data. Because earthquakes are results of movement and deformation of land masses moving in different directions, the distribution of earthquake epicenters may be used to identify the direction and rates of land mass movement. This paper first analysed the spatial distribution of earthquakes using spatial statistics, and then results were compared with the spatial arrangement of geostructural regions. The spatial distribution of earthquakes in the Korean Peninsula can be summarized as the followings; firstly, the intensity of earthquakes shows only weak spatial dependency, and shows large difference even at adjacent regions. Secondly, the epicenter distribution has a clear spatial accumulation pattern, even though the intensity of earthquake shows a random pattern. Thirdly, the high density area of earthquakes shows a clear 'L' shape, passing through Pyeongannam-do, centered at Pyeongyang, and Hwanghae-do, Seosan and Pohang. The correlation coefficient between the density of earthquakes and distance from geostructral region boundaries is much higher than those between the density of fault lines and distance from tectonic division boundaries. Since fault lines and tectonic divisions in the Korean Peninsula are the results of long-term geological development, there is an apparent scale discrepancy to find significant correlations with earthquakes. This result verifies the research hypothesis that the Korean Peninsula is divided into four geostructral regions in which each has its own moving direction and spatial deformation characteristics. The existence of geostructural regions is also supported by the movement parrerns of land masses estimated from the GPS measurements. This conclusion is expected to provide a new perspective to understand the geomorphological developments and the earthquake occurrences in the Korean Peninsula.

Simplified Collision Analysis Method for Submerged Floating Railway Using the Theory of a Beam with an Elastic Foundation (탄성지지 보이론을 이용한 해중철도 간이 충돌해석법)

  • Seo, Sung-Il;Kim, Jin Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.202-206
    • /
    • 2013
  • A submerged floating railway is an innovative tunnel infrastructure passing through the deep sea independent of wave and wind so that high speed trains can run on it. It doesn't depend on water depth and is cost effective due to modular construction on land. The construction period can be reduced drastically. This paper introduces the concept design of a submerged floating railway, and for securing safety, proposes a method to analyze the structural behavior of the body in case of collision with a submarine. The theory of a beam with an elastic foundation was used to calculate the equivalent mass of the body so that the perfect elastic collision could be applied to calculate the collision velocity. The maximum deformation and bending moment was analyzed based on energy conservation. To verify the results, a collision analysis using a finite element analysis code was made. Comparing the results confirmed that this simplified collision analysis method gives enough accurate deformation and bending moment to be used for actual estimation in the initial design stage.

Case Study of Characteristics on Lateral Deformation in Soft Ground under Embankment in the Nakdong River Estuary(I) (낙동강 하구지역 성토하부 연약지반의 측방변형 특성에 관한 사례 연구(I))

  • Han, Byung-Won;Son, Hwa-Soo;Sung, In-Chool;Baek, Young-Gyun;Lee, Gay-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1178-1189
    • /
    • 2010
  • 낙동강 하구지역 연직배수공법이 적용된 연약지반에서 성토시 발생할 수 있는 지반의 측방변형에 대해 3개소 현장 35개 지점에서 수행한 현장 계측데이터를 분석하였다. 성토과정에서 측방변형 패턴 및 변형량을 파악하는데 가장 우선적으로 파악해야 할 계측항목이 지중경사계이며 지반특성별 측방변형 패턴(최대 측방변위발생 지점, 전단변위 발생지점, 지층에 따른 변위발생 형태 등)의 정밀 분석을 위해서는 지중경사계가 설치된 지점의 지층구성을 파악하는 것이 가장 중요하다는 것을 알 수 있었다. 최대 측방변위량과 성토체 중앙부 침하량과의 관계에서는 Tavenas et al.(1979)이 제안한 ${\Delta}_y=(0.18+0.09){\Delta}_s$이하로 관측되었다. 또한 측방변형 억제 및 인접지반의 동반침하를 차단하기 위해 보강된 D.C.M., C.I.P.구간에서는 Tavenas et al.(1979)이 제안한 ${\Delta}_y=(0.18-0.09){\Delta}_s$이하로 관측되었다. 최대 측방변위량과 성토속도와의 관계에서는 과잉간극수압 소산에 필요한 충분한 시간과 원활한 배수가 될 수 있도록 시공관리(성토속도조절, 배수관리 철저)하는 것이 무엇보다도 중요하다는 사실을 다시 한 번 확인 할 수 있었다. 마지막으로 편재하중 재하에 따른 인접 지반 및 구조물의 침하 및 기울기 변화는 측방유동에 의한 거동과 함께 압밀침하에 의한 제체의 체적감소로 인한 인접지반의 동반침하가 상당기간 동안 발생하고 있는 것으로 관측되었다.

  • PDF

Seismic Performance of Special Shear Wall with the Different Hoop Reinforcement Detail and Spacing in the Boundary Element (경계요소 횡보강근의 상세와 배근간격에 따른 특수전단벽의 내진성능)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents experimental results on detailing of boundary element transverse reinforcement, proposed to alleviate placement detailing of special shear wall experiencing difficulty in construction at the sites due to recently reinforced seismic regulations, according to the type and placement interval of transverse reinforcement. As a result of experiment, crack and destruction aspects of SSWR series specimen that employed the proposed detailing of transverse reinforcement showed similar trend as SSW series specimen that used closed hoop. Predicted maximum strength values were exceeded. Also as a result of comparing energy dissipation ability, SSWR2 specimen that follows alleviated placement detailing was found to have similar seismic performance as special shear wall SSW2 specimen based on the existing design standard. As it satisfies the deformation angle condition of 1.5% provided in the design standard, SSWR2 can be used as the main lateral force resistance element in structures.

An Analytical Study on the Optimum Application of Diaphragm in Circular Steel Piers (원형강교각의 다이아프램 최적 적용에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.91-96
    • /
    • 2007
  • To improve the land use of urban, Construction of the circular steel column is required recently. The circular steel columns have a advantage for improving a load carrying capacity as wall as reducing a effective section area. However, the circular steel columns under service load, such as earthquake, shows a tendency to cause local buckling and large deformation. To prevent these phenomena, use of diaphragm is considered. It is reported that longitudinal stiffeners has a effect on improving a buckling and fatigue performance of steel structures. The research of effect on diaphragm is not sufficient. Under monotonic and cyclic loadings diaphragm make a important role to prevent local buckling and deformation of used steel structures. Therefore, influence of diaphragm on performance of used steel structures is investigated. In this study, the influence of diaphragm on seismic and deformation performance of circular steel piers was investigated by using elastic-plastic finite element analysis considered geometrical and material non-linearity. The seismic performance of circular steel columns was evaluated for analytical parameter of manufactured part. The seismic performance of circular steel columns was clarified by comparing an energy dissipation of circular steel piers.

  • PDF

Flow Regime Boundary for Restoring River Ecosystems: A Case of the Han River Basin (하천 생태계 복원을 위한 적정 유황 범위 고찰: 한강유역사례)

  • Kang, Seongkyu;Lee, Dong-Ryul;Choi, Sijung
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.1-8
    • /
    • 2019
  • River works for water utilization have substantially altered the natural flow regime, and it has resulted in deformation of healthy river ecosystems. In Korea, river restoration projects have conducted actively since 1990's. Major purposes of the river restoration are the rehabilitation of modified river channel, improvement of water quality, and creation of aquatic habitats as well as recreational spaces using natural material for river work. However, there have been little interests about the restoration of flow regime which influences to most aspects of river ecosystems. The restoration of natural flow regime has received much attention in preservation of aquatic ecosystems. It should be needed to explore the relationship between flow regime and river ecosystems, and the restoring flow regime is essential. This paper introduce the concept of environmental flow through the interrelation between flow regime and river ecosystem. It provides rolls of flow regime and addresses the method of establishing target flow regime using the RVA(Range of Variability Approach) that suggested by Richter et al.(1997) through analysis of altered flow pattern case of Han river basin.

Ground Subsidence Estimation in a Coastal Reclaimed Land Using JERS-1 L-band SAR Interferometry (JERS-1 L-band SAR Interferometry 를 이용한 연안매립지 지반침하 관측)

  • 김상완;이창욱;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.465-478
    • /
    • 2002
  • We measured subsidences occurred in a coastal reclaimed land, Noksan industrial complex, from May 2, 1996 to February 21, 1998, using 5 interferograms of JERS-1 L-band SAR. SAR with a spatial resolution of about 16 m can detect the two-dimensional distribution of subsidence that is difficult to be estimated from in situ measurements. Accuracy of the subsidences estimated by 2-pass DInSAR was evaluated using the measurements of Magnetic Probe Extensometer (accuracy of :${\pm}$1 mm) installed at 42 stations. DInSAR measurements were well correlated with the field measurements showing an average correlation coefficient of 0.77. The correlation coefficient was further improved to be 0.87 (with RMSE of 1.44 cm) when only highly coherenced (>0.5) pixels were used. The slope of regression line was 1.04, very close to the unit value. In short, DInSAR measurements have a good linear relation with field measurements so that we can effectively detect a subsidence in the coastal reclaimed area especially using pixels of high coherence (>0.5). The maximum accumulated subsidence was about 60 cm in the study area, while the subsidence in the northern and south western areas were less than 20 cm. The resuts show that DInSAR is extremely useful for geotechnical applications as well as observation of natural deformation.

Wave Response Analysis and Future Direction of Mega-Float

  • Park, Sung-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.153-168
    • /
    • 2001
  • In the country where the population concentrates in the metropolis with the narrow land, development of th ocean space is necessary. Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And very large floating structure are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave eternal force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structure part of this model. And the analysis is carried out using the boundary element method in the fluid part. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Surface Stress Profiles at the Contact Boundary in Backward Extrusion Processes for Various Punch Shapes (후방압출에서 펀치형상에 따른 접촉경계면의 표면부하상태)

  • Noh, J.H.;Kim, M.T.;Vishara, R.J.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.565-571
    • /
    • 2009
  • This paper is concerned with the analysis on the surface stress profiles of perfectly plastic material in backward extrusion process. Due to heavy surface expansion appeared usually in the backward extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the analyses have focused to reveal the surface conditions at the contact boundary for various punch shapes in terms of surface expansion, contact pressure, and relative movement between punch and workpiece which consists of sliding velocity and distance, respectively. Punch geometries adopted in the analysis include concave, hemispherical, pointed and ICFG recommended shapes. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward extrusion process under different punch geometries. The simulation results are summarized in terms of surface expansion, contact pressure, sliding velocity and sliding distance at different reduction in height, deformation patterns, and load-stroke relationship, respectively.