• Title/Summary/Keyword: laminated structures

Search Result 487, Processing Time 0.022 seconds

Vibration and Buckling Analysis of Laminated Composite Plates using RM Isogeometric General Plate Element (RM 등기하 판요소를 이용한 적층판의 자유진동 및 선형좌굴 해석)

  • Kim, Ha-Ryong;Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.59-68
    • /
    • 2014
  • A study on the vibration and buckling analyses of laminated composite plates is described in this paper. In order to carry out the analyses of laminated composite plates, a NURBS-based isogeometric general plate element based on Reissner-Mindlin (RM) theory is developed. The non-uniform rational B-spline (NURBS) is used to represent the geometry of plate and the unknown displacement field and therefore, all terms required in this element formulation are consistently derived by using NURBS basis function. Numerical examples are conducted to investigate the accuracy and reliability of the present plate element. From numerical results, the present plate element can produce the isogeometric solutions with sufficient accuracy. Finally, the present isogeometric solutions are provided as future reference solutions.

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams (강판 보강 집성재 보의 휨성능 평가 연구)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Buckling and vibration of symmetric laminated composite plates with edges elastically restrained

  • Ashour, Ahmed S.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.439-450
    • /
    • 2003
  • The finite strip transition matrix technique, a semi analytical method, is employed to obtain the buckling loads and the natural frequencies of symmetric cross-ply laminated composite plates with edges elastically restrained against both translation and rotation. To illustrate the accuracy and the validation of the method several example of cross play laminated composite plates were analyzed. The buckling loads and the frequency parameters are presented and compared with available results in the literature. The convergence study and the excellent agreement with known results show the reliability of the purposed technique.

Optimal Design of Composite Laminated Stiffened Structures Using micro Genetic Algorithm (마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계)

  • Yi, Moo-Keun;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.268-271
    • /
    • 2005
  • Researches based on genetic algorithms have been performed in composite laminated structures optimization since 1990. However, conventional genetic algorithms have a disadvantage that its augmentation of calculation costs. A lot of variations have been proposed to improve the performance and efficiency, and micro genetic algorithm is one of them. In this paper, micro Genetic Algorithm was employed in the optimization of laminated stiffened composite structures to maximize the linear critical buckling load and the results from both conventional genetic algorithm and micro genetic algorithm were compared.

  • PDF

A Study on the Optimal Design of Laminated Composites using Genetic Algorithm (유전자 알고리즘을 이용한 적층복합재료의 최적설계에 관한 연구)

  • 조석수;주원식;장득열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.729-737
    • /
    • 1996
  • Laminated composite plates have been applied to aircraft structures because their properties are superior to the conventional materials and the laminates have anisortropic elastic properties. However, it tis diffcult to determine stacking structures using actual design variables for the lack of searching capability of existing optimization technique. GA(generic algorithms) are robust search algorithms based on the mechanics of natural selection and natural genetics. Therefore, this study presents an application of IGA to stiffness and weight optimization design and gives the various stacking structures suitable to constraint conditions.

  • PDF

Finite Element Formulation Based on Enhanced First-order Shear Deformation Theory for Thermo-mechanical Analysis of Laminated Composite Structures (복합소재 적층 구조물에 대한 열-기계적 거동 예측을 위한 개선된 일차전단변형이론의 유한요소 정식화)

  • Jun-Sik Kim;Dae-Hyeon Na;Jang-Woo Han
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • This paper proposes a new finite element formulation based on enhanced first-order shear deformation theory including the transverse normal strain effect via the mixed formulation (EFSDTM-TN) for the effective thermo-mechanical analysis of laminated composite structures. The main objective of the EFSDTM-TN is to provide an accurate and efficient solution in describing the thermo-mechanical behavior of laminated composite structures by systematically establishing the relationship between two independent fields (displacement and transverse stress fields) via the mixed formulation. Another key feature is to consider the thermal strain effect without additional unknown variables by introducing a refined transverse displacement field. In the finite element formulation, an eight-node isoparametric plate element is newly developed to implement the advantage of the EFSDTM-TN. Numerical solutions for the thermo-mechanical behavior of laminated composite structures are compared with those available in the open literature to demonstrate the numerical performance of the proposed finite element model.

Second-order statistics of natural frequencies of smart laminated composite plates with random material properties

  • Singh, B.N.;Umrao, Atul;Shukla, K.K.;Vyas, N.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.19-34
    • /
    • 2008
  • Nowadays developments in the field of laminated composite structures with piezoelectric have attracted significant attention of researchers due to their wide range of applications in engineering such as sensors, actuators, vibration suppression, shape control, noise attenuation and precision positioning. Due to large number of parameters associated with its manufacturing and fabrication, composite structures with piezoelectric display a considerable amount of uncertainty in their material properties. The present work investigates the effect of the uncertainty on the free vibration response of piezoelectric laminated composite plate. The lamina material properties have been modeled as independent random variables for accurate prediction of the system behavior. System equations have been derived using higher order shear deformation theory. A finite element method in conjunction with Monte Carlo simulation is employed to obtain the secondorder statistics of the natural frequencies. Typical results are presented for all edges simply supported piezoelectric laminated composite plates to show the influence of scattering in material properties on the second order statistics of the natural frequencies. The results have been compared with those available in literature.

Post-buckling responses of a laminated composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.733-743
    • /
    • 2018
  • This paper presents post-buckling responses of a simply supported laminated composite beam subjected to a non-follower axially compression loads. In the nonlinear kinematic model of the laminated beam, total Lagrangian approach is used in conjunction with the Timoshenko beam theory. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The distinctive feature of this study is post-buckling analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. The effects of the fibber orientation angles and the stacking sequence of laminates on the post-buckling deflections, configurations and stresses of the composite laminated beam are illustrated and discussed in the numerical results. Numerical results show that the above-mentioned effects play a very important role on the post-buckling responses of the laminated composite beams.

Postbuckling analysis of laminated composite shells under shear loads

  • Jung, Woo-Young;Han, Sung-Cheon;Lee, Won-Hong;Park, Weon-Tae
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.373-394
    • /
    • 2016
  • The postbuckling behavior of laminated composite plates and shells, subjected to various shear loadings, is presented, using a modified 8-ANS method. The finite element, based on a modified first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the various location and number of enhanced membrane and shear interpolation. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. The effects of various types of lay-ups, materials and number of layers on initial buckling and postbuckling response of the laminated composite plates and shells for various shear loading have been discussed. In addition, the effect of direction of shear load on the postbuckling behavior is studied. Numerical results and comparisons of the present results with those found in the literature for typical benchmark problems involving symmetric cross-ply laminated composites are found to be excellent and show the validity of the developed finite element model. The study is relevant to the simulation of barrels, pipes, wing surfaces, aircrafts, rockets and missile structures subjected to intense complex loading.