• Title/Summary/Keyword: laminar lifted flame

Search Result 55, Processing Time 0.018 seconds

A study on Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 층류 동축류 제트화염에서의 화염진동에 관한 실험적 연구)

  • Lee, Won June;Park, Jeong;Kwon, Oh Boong;Yun, Jin Han;Keel, Sang In;Kim, Tae Hyung;Kim, Young Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.19-22
    • /
    • 2012
  • Experimental study in coflow jet flames has been conducted to investigate effects of adding Helium to coflowing air-side in self-excitation. The Differences between buoyancy-driven and diffusive-thermal self-excitations with the same order of O(1.0 Hz) in self-excitation are explored and discussed in laminar coflow jet flames.

  • PDF

A Numerical Study for the Scalar Dissipation Rate and the Flame Curvature with Flame Propagation Velocity in a Lifted Flame (부상화염에서 화염전파속도에 따른 스칼라소산율과 곡률반경에 대한 수치적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong;Kim, Kyung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • Flame propagation velocity is the one of the main mechanism of the stabilization of triple flame. To quantity the triple flame propagation velocity, Bilger presents the triple flame propagation velocity, depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there has not been any attempt to quantify the triple flame propagation velocity with the flame radius of curvature and scalar dissipation rate. In the present research, there was discussion about the radius of flame curvature and scalar dissipation rate, through the numerical study. As a result, we have known that the flame propagation velocity was linear with the nozzle exit velocity and scalar dissipation rate decreases nonlinearly with the flame propagation velocity and radius of curvature of flame increases linearly. Also radius of curvature of flame decreases non-linearly with the scalar dissipation rate. Therefore, we ascertained that there was corelation among the scalar dissipation rate, radius of flame curvature and flame propagation velocity.

Experimental Study on Comparison between Buoyancy Driven and Lewis Number Induced Self-excitations in Laminar Lifted Coflow-jet Flames (층류 동축류 제트 부상화염에서 부력에 의한 자기진동과 루이스 수에 의한 자기진동 비교에 관한 실험적 연구)

  • Lee, Won June;Park, Jeong;Kwon, Oh Boong;Yun, Jin Han;Keel, Sang In
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2014
  • Experimental study in laminar propane coflow jet flames has been conducted to investigate self-excitations. For various propane mole fractions and jet velocities, two types of self-excitation were observed: (1) buoyancydriven self-excitation (hereafter called BDSE) and (2) Lewis-number-induced self-excitation coupled with (1) (hereafter called LCB). The mechanism of Lewis-number-induced self-excitation (hereafter called LISE) is proposed. When the system $Damk\ddot{o}hler$ number was lowered, LISE was shown to be launched. The LISE is closely related to heat loss, such that it can be launched in even helium-diluted methane coflow-jet flame (Lewis number less than unity). Particularly, The LISE becomes significant as the $Damk\ddot{o}hler$ number decreases and heat-loss is excessively large.

Study on Heat-Loss-Induced Self-Excitation in Laminar Lifted Jet Flames (층류제트 부상화염에서 열손실에 의한 자기진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo;Bae, Dae-Seok;Yun, Jin-Han;Keel, San-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We experimentally investigated lifted propane jet flames diluted with nitrogen to obtain flame-stability maps based on heat-loss-induced self-excitation. We found that heat-loss-induced self-excitations are caused by conductive heat loss from premixed flame branches to trailing diffusion flames as well as soot radiation. The conductive-heat-loss-induced self-excitation at frequencies less than 0.1 Hz is explained well by a suggested mechanism, whereas the oscillation of the soot region induces a self-excitation of lift-off height of the order of 0.1 Hz. The suggested mechanism is also verified from additive experiments in a room at constant temperature and humidity. The heat-loss-induced self-excitation is explained by the Strouhal numbers as a function of the relevant parameters.

Effect of AC Electric Fields on Flow Instability in Laminar Jets (층류제트유동 불안정성에 미치는 교류 전기장 효과)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.