• 제목/요약/키워드: laminar flame speed

검색결과 63건 처리시간 0.02초

대향류 유동장에서 삼지 화염 전파 특성에 관한 연구 (Characteristics of Propagating Tribrachial Flames in Counterflow)

  • 정태만;고영성;정석호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.422-427
    • /
    • 2000
  • Propagation characteristics of tribrachial flames have been investigated experimentally in both two-dimensional and axisymmetric counterflows. Mixture fraction gradient at stoichiometric location is controlled by varying equivalence ratios at the two nozzles, one of which maintains rich while the other lean premixture. Tribrachial flames propagating through these mixtures are investigated. The propagation speed of tribrachial flames in two-dimensional counterflow decreases with fuel concentration gradient and has much higher speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large propagation speed can be attributed to the tribrachial flame propagating with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient is estimated and extrapolated experimental results substantiate this limiting speed. As mixture fraction gradient approaches zero, a transition in propagation characteristics occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar behavior has been obtained for tribrachial flames propagating in axisymmetric counterflow.

  • PDF

에지화염의 자기 진동 (Self-excitation of Edge Flame)

  • 박정;윤성환;정용호;이원준;권오붕
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.167-170
    • /
    • 2012
  • Self-excitations of edge flame were studied in laminar lifted free- and coflow-jet as well as counterflow flames diluted with nitrogen and helium. The self-excitations, originated from variation of edge flame speed and found in the above-mentioned configurations, are discussed. A newly found self-excitation and flame blowout, caused by the conductive heat loss from premixed wings to trailing diffusion flame are described and characterized in laminar lifted jet flames. Some trials to distinguish Lewis-number-induced self-excitation from buoyancy-driven one with O(1.0 Hz) are introduced, and then the differences are discussed. In counterflow configuration, important role of the outermost edge flame in flame extinction is also suggested and discussed.

  • PDF

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.387-389
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.125-128
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

Characteristics of Propagating Tribrachial Flames in Counterflow

  • Ko, Young-Sung;Chung, Tae-Man;Chung, Suk-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1710-1718
    • /
    • 2002
  • The effect of fuel concentration gradient on the propagation characteristics of tribrachial (or triple) flames has been investigated experimentally in both two-dimensional and axisymmetric counterflows. The gradient at the stoichiometric location was controlled by the equivalence ratios at the two nozzles; one of which is maintained rich, while the other lean. Results show that the displacement speed of tribrachial flames in the two-dimensional counterflow decreases with fuel concentration gradient and has much larger speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large displacement speed can be attributed to the flame propagation with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient was estimated and the curvefit of the experimental data substantiates this limiting speed. As mixture fraction gradient approaches zero, a transition occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar results have been obtained for tribrachial flames propagating in axisymmetric counterflow.

넓은 당량비 구간에서 수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 층류연소속도에 관한 연구 (A study on the laminar burning velocity according to the H2 content variation in a large range of equivalence ratio of syngas(H2/CO)-air premixed flames)

  • 정병규;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.215-218
    • /
    • 2012
  • In this study, syngas laminar burning velocities with various hydrogen contents were studied using both experimental measurements and kinetic simulations. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including burning velocities were made using CHEMKIN Package with USC-Mech II. A large range of syngas mixture compositions such as 10:90%, 25:75%, 50:50%, 75:25% and equivalence ratio from lean condition of 0.5 to rich condition of 5.0 have been conducted. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increasing of $H_2$ content although the flame speed of hydrogen is faster about ten times than carbon monoxide. This phenomenon is attributed to the rapid production of the hydrogen related radicals such as H and OH at the early stage of combustion, which is confirmed the linear increasing of radical concentrations on kinetic simulation.

  • PDF

A Study on Laminar Lifted Jet Flames for Diluted Methane in Co-flow Air

  • Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Kwon, Oh Boong
    • 한국연소학회지
    • /
    • 제20권3호
    • /
    • pp.1-7
    • /
    • 2015
  • The laminar lifted jet flames for methane diluted with helium and nitrogen in co-flow air have been investigated experimentally. Such jet flames could be lifted in both buoyancy-dominated and jet momentum dominated regimes (even at nozzle exit velocities much higher than stoichiometric laminar flame speed) despite the Schmidt number less than unity. Chemiluminescence intensities of $OH^*$ radical (good indicators of heat release rate) and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera and digital video camera at various conditions. It was shown that, an increase in $OH^*$ concentration causes increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime, an increase in radius of curvature in addition to the increased $OH^*$ concentration stabilizes such lifted flames. Stabilization of such lifted flames is discussed based on the stabilization mechanism.

삼지화염 구조해석을 위한 다양한 가시화 기술 적용에 대한 연구 (Study on the Application of Various Visualization Techniques for Analysing the Structure of Tribrachial Flame)

  • 김민국;원상희;정석호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.74-79
    • /
    • 2005
  • The tribrachial flame in laminar coflow jet has been investigated experimentally with unsteady propagating condition. With adopting various visualization techniques, including OH-PLIF, Rayleigh Scattering technique, it was confirmed that the location of tribrachial point is on the inclined surface of flame and the propagation speed of tribrachial flame was significantly affected by the velocity gradient.

  • PDF

Experimental Studies on the Interaction Between a Propagating Flame and Multiple Obstacles in a Rectangular Chamber

  • Park, Dal-Jae;Ahn, Jeong-Jin;Lee, Young-Soon
    • 한국가스학회지
    • /
    • 제12권1호
    • /
    • pp.54-61
    • /
    • 2008
  • Experimental investigations were performed to assess the influences of different multiple obstacles on flame propagation in a rectangular confinement. Three different multiple obstacles were used: circular, triangular and square cross-sections with blockage ratios of 15% and 30%. The same method described in Park et al. [13] to investigate the interaction between the propagating flame and the obstacle was applied. Before the freely propagating flame impinged on the obstacle, the flame propagation speed remains close to the laminar burning velocity, regardless of the obstacles used. The reported data revealed that the trend in increase of the local flame propagation speed is a result of the interaction between the obstacle and the propagating flame front behind the obstacle. The local speed was found to increase from a circular to a triangular and a square obstacle. The mean flame speed was found to be less dependent on both the obstacle types and the different blockage ratios used.

  • PDF

에틸렌 첨가에 따른 메탄 화염점파속도와 화학반응 메카니즘 비교 및 선형, 비선형 모델 평가 (Comparison of Laminar Burning Velocity of CH4/C2H4/Air Mixtures with Consideration of Chemical Mechanism)

  • 반규호;양재영;박정;권오붕;이대근;김승곤;곽영태;노동순;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.165-168
    • /
    • 2015
  • To measure laminar burning velocity in methane/air/ethylene mixture flame, propagating centrally ignited spherical premixed flame to radial direction was measured by high-speed schlieren images with elevated pressure. In this study, The experimentally measured unstretched laminar burning velocities of methane was compared with GRI mech 3.0 to validate experimental data and choose the radius range, respectively. numerical prediction using the PREMIX code with GRI mech 3.0, USC mech II,, and Wang mech were evaluated through comparison with experimental burning velocity with consideration of extrapolation on linear/nonlinear model.

  • PDF