• Title/Summary/Keyword: lamb waves

Search Result 112, Processing Time 0.026 seconds

Structural Damage Diagnosis Method by Using the Time-Reversal Property of Guided Waves (유도초음파의 시간.역전 현상을 활용한 구조손상 진단기법)

  • Lee, U-Sik;Choi, Jung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-74
    • /
    • 2010
  • This paper proposes a new TR-based baseline-free SHM technique in which the time-reversal (TR) property of the guided Lamb waves is utilized. The new TR-based SHM technique has two distinct features when compared with the other TR-based SHM techniques: (1) The backward TR process commonly conducted by the measurement is replaced by the computation-based process; (2) In place of the comparison method, the TOF information of the damage signal extracted from the reconstructed signal is used for the damage diagnosis in conjunction with the imaging method which enables us to represent the damage as an image. The proposed TR-based SHM technique is then validated through the damage diagnosis experiment for an aluminum plate with a damage at different locations.

Detection of a Crack on a Plate by IDT Type Lamb Wave Sensors (IDT형 Lamb 파 센서에 의한 판상의 균열 검출)

  • Kim, Jun-Ho;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.483-490
    • /
    • 2010
  • In this paper, an Inter-Digital Transducer (IDT) type Lamb wave sensor is proposed to estimate the geometry and number of cracks on a plate structure, and its validity is checked through experiments. This IDT type sensor is more readily controllable than conventional patch type piezoelectric sensors to modify its operation frequency and directionality by altering its finger patterns. In this work, omni-directional annular IDT and highly directional rectangular IDT sensors are designed and fabricated. The IDT sensors are used to diagnose the length, number and orientation of cracks on an aluminum plate by measuring the amplitude and time of flight of Lamb waves. The results are analyzed to discuss the efficacy of the IDT sensors.

Quantitative evaluation of through-thickness rectangular notch in metal plates based on lamb waves

  • Zhao, Na;Wu, Bin;Liu, Xiucheng;Ding, Keqin;Hu, Yanan;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.751-761
    • /
    • 2019
  • Lamb wave technology is a promising technology in the field of structural health monitoring and can be applied in the detection and monitoring of defects in plate structures. Based on the reconstruction algorithm for the probabilistic inspection of damage (RAPID), a Lamb-based detection and evaluation method of through-thickness rectangular notches in metal plates was proposed in this study. The influences of through-thickness rectangular notch length and the angle between sensing path and notch length direction on signals were further explored through simulations and experiments. Then a damage index calculation method which focuses on both phase and amplitude difference between detected signals and baseline signals was proposed. Based on the damage index difference between two vertically crossed sensing paths which pass through the notch in a sensor network, the notch direction identification method was proposed. In addition, the notch length was determined based on the damage index distribution along sensing paths. The experimental results showed that the image reconstructed with the proposed method could reflect the information for the evaluation of notches.

The Evolution of Electromechanical Admittance from Mode-converted Lamb Waves Reverberating on a Notched Beam (노치가 있는 보에서 잔향하는 모드변환 램파의 전기역학적 어드미턴스 전이)

  • Kim, Eun Jin;Park, Hyun Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.270-280
    • /
    • 2016
  • This paper investigates the evolution of EM admittance of piezoelectric transducers mounted on a notched beam from wave propagation perspective. A finite element analysis is adopted to obtain numerical solutions for Lamb waves reverberating on the notched beam. The mode-converted Lamb wave signals due to a notch are extracted by using the polarization characteristics of piezoelectric transducers collocated on the beam. Then, a series of temporal spectrums are computed to demonstrate the evolution of EM admittance through fast Fourier transform of the mode-converted Lamb wave signals which are consecutively truncated in the time domain. When truncation time is relatively small, the corresponding temporal spectrum is governed by the characteristics of the input driving frequency. As truncation time becomes large, however, the modal characteristics of the notched beam play a crucial role in the temporal spectrum within the input driving frequency band. This implies that mode-converted Lamb waves reverberating on the beam contributes to the resonance of the beam. The root mean square values are computed for the temporal spectrums in the vicinity of each resonance frequency. The root mean square values increase monotonically with respect to truncation time for any resonance frequencies. Finally the implications of the numerical observation are discussed in the context of damage detection of a beam.

Quantitative Estimation of Transmitted and Reflected Lamb Waves at Discontinuity (불연속면에서 램파의 반사와 투과에 대한 정량적 추정)

  • Lim, Hyung-Jin;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.359-366
    • /
    • 2010
  • For the application of Lamb wave to structural health monitoring(SHM), understanding its physical characteristic and interaction between Lamb wave and defect of the host structure is an important issue. In this study, reflected, transmitted and mode converted Lamb waves at discontinuity of a plate structure were simulated and the amplitude ratios are calculated theoretically using Modal decomposition method. The predicted results were verified comparing with finite element method(FEM) and experimental results simulating attached PZTs. The result shows that the theoretical prediction is close to the FEM and the experimental verification. Moreover, quantitative estimation method was suggested using amplitude ratio of Lamb wave at discontinuity.

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

On the dispersion of waves propagating in "plate+fluid layer" systems

  • Akbarov, Surkay D.;Negin, Masoud
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.123-142
    • /
    • 2021
  • The paper deals with the study of the dispersion of quasi-Lamb waves in a hydro-elastic system consisting of an elastic plate, barotropic compressible inviscid fluid, and rigid wall. The motion of the plate is described using the exact equations of elastodynamics, however, the flow of the fluid using the linearized equations and relations of the Navier-Stokes equations. The corresponding dispersion equation is obtained and this equation is solved numerically, as a result of which the corresponding dispersion curves are constructed. The main attention is focused on the effect of the presence of the fluid and the effect of the fluid layer thickness (i.e., the fluid depth) on the dispersion curves. The influence of the problem parameters on the dispersion curves related to the quasi-Scholte wave is also considered. As a result of the analyses of the numerical results, concrete conclusions are made about the influence of the fluid depth, the rigid wall restriction on the fluid motion, and the material properties of the constituents on the dispersion curves. During the analyses, the zeroth and the first four modes of the propagating waves are considered.

Multi-Parameter Lamb Wave Tomography

  • Choi, Jae-Seung;Kline, Ronald A.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This work shows that it is possible to obtain information about more than one parameter from acoustic field information. A variety of ultrasonic Lamb wave modes were utilized to reconstruct thickness and density of an isotropic plate. An image reconstruction of one parameter (thickness of a plate) was carried out for four cases, i.e., the lowest symmetrical and anti symmetrical modes, and the fastest symmetrical and anti symmetrical Lamb waves among multiple modes. For two parameter reconstructions (thickness and density), the image processing was performed using the lowest symmetrical and antisymmetrical modes simultaneously. In this work, a modified version of algebraic reconstruction technique (ART), which is a form of finite-series expansion method, was employed to reconstruct the ultrasonically computed tomographic images. Results from several sample geometries are presented.

  • PDF