• Title/Summary/Keyword: lagrange equation

Search Result 294, Processing Time 0.024 seconds

Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers

  • Singh, Vijay K.;Panda, Subrata K.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.853-872
    • /
    • 2015
  • Numerical analysis of large amplitude free vibration behaviour of laminated composite spherical shell panel embedded with the piezoelectric layer is presented in this article. For the investigation purpose, a general nonlinear mathematical model has been developed using higher order shear deformation mid-plane kinematics and Green-Lagrange nonlinearity. In addition, all the nonlinear higher order terms are included in the present mathematical model to achieve any general case. The nonlinear governing equation of freely vibrated shell panel is obtained using Hamilton's principle and discretised using isoparametric finite element steps. The desired nonlinear solutions are computed numerically through a direct iterative method. The validity of present nonlinear model has been checked by comparing the responses to those available published literature. In order to examine the efficacy and applicability of the present developed model, few numerical examples are solved for different geometrical parameters (fibre orientation, thickness ratio, aspect ratio, curvature ratio, support conditions and amplitude ratio) with and/or without piezo embedded layers and discussed in details.

Control of a Three-pole Hybrid Active Magnetic Bearing using Redundant Coordinates (잉여좌표계를 이용한 3-폴 하이브리드형 자기베어링 제어)

  • Park, Sang-Hyun;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1375-1381
    • /
    • 2007
  • In this paper, we propose a linear modeling and identical PD controller design scheme for the three-pole hybrid-type AMB recently developed in the laboratory, which consists of three permanent magnets, providing bias flux, three Hall diodes, measuring rotor displacements, and ring type permanent magnet bearing, stabilizing in axial and tilting directions. Along the three physical coordinates formed by three poles, we introduce the redundant coordinate system and three identical decoupled controllers to construct linear model. The experiments are also carried out in order to verify the effectiveness of proposed controller in stabilizing the transient and steady state response of rotor.

  • PDF

Elastic Analysis of Cold Extrusion Die Set with Stress Ring (보강링을 갖는 냉간 압출 금형 세트의 탄성해석)

  • 안성찬;이근안;김수영;임용택
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.355-362
    • /
    • 2002
  • In this study, an axi-symmetric finite element program for elastic analysis of the die set shrink fitted in cold extrusion was developed. The geometrical constraint according to shrink fit was enforced by employing the Lagrange multiplier method. The numerical results for strain and stress distributions in the die set including single and multi stress rings assembled by shrink fit were compared well with the Lame's equation for thick-walled solution available in the literature. To extend the applicability of the analysis program developed, various cases without or with stress ring and with pre-stress applied on stress ring were numerically investigated as well. This numerical approach enables the optimization study to determine optimal dimensions of die set to improve tool life for practical use in industry.

Optimal technique of cost function for FACTS operation in power system using Lagrange Multipliers (라그랑지 승수를 사용한 계통의 FACTS 기기 설치비용 함수의 최적화 기법)

  • Park Seong Wook;Baek Young Sik;Seo Bo Hyeok
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.15-17
    • /
    • 2004
  • The flexible AC transmissions system (FACTS) is the underpinning concept upon which are based promising means to avoid effectively power flow bottlenecks and ways to extend the loadability of existing power transmission networks. This paper proposes a method by which the optimal locations of the FACTS to be installed in power system under cost function. The optimal solution of this type of problem requires large scale nonlinear optimisation techniques. We used Lagrange multipliers to solve a nonlinear equation with equality and ineaquality constraints. Case studies on the standard IEEE 14 bus system show that the method can be implemented successfully and that it is effective for determining the optimal location of the FACTS

  • PDF

Transient Response Analysis of Locally Nonlinear Structures Using Substructure-Based State Equations (부분구조의 상태방정식을 이용한 국부 비선형계의 과도응답해석)

  • 김형근;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.52-56
    • /
    • 1993
  • An efficient method is presented for determining transient responses of locally nonlinear structures using substructure eigenproperties and Lagrange multiplier technique. The method is based upon the mode synthesis formulation procedure, but does not construct the equations of motion of the combined whole structure compared with the conventional methods. For modal bases of each linear substructure, either fixed or free interface modes can be employed. The transient analysis is based upon the recurrence discrete-time state equations and offers the simplicity of the Euler integration method without requiring small time increment and iterative solution procedure. Numerical examples reveal that the method is very accurate and efficient in calculating transient responses compared with the direct numerical integration method.

  • PDF

Electrooptic Response of Reflective Liquid Crystal Cell

  • Lee, Geon-Joon;C. H. Oh;Lee, Y. P.;T. K. Lim
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.33-35
    • /
    • 2003
  • The electrooptic properties of the reflected light in a reflective mode, $45^{\circ}C$twisted nematic liquid crystal (TNLC) cell were investigated in the voltage regions near and away from the Freedericksz transition threshold. The measured reflectivity away from the threshold voltage ($V_th$) could not be described by the model which assurnes a constant tilt angle as well as a linearized distribution of twist angle across the cell, although the data are well fitted near $V_th$. We found that in the voltage region away from $V_th$, the model considering the distributions of the tilt angle and the twist angle should be applied for the calculation of the reflectivity. The director-axis distributions were obtained from the numerical integration of the Euler-Lagrange equation.

Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel

  • Kar, Vishesh R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.693-709
    • /
    • 2015
  • In this article, nonlinear free vibration behaviour of functionally graded spherical panel is analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of functionally graded material are assumed to be varying continuously in transverse direction and evaluated using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of the shell panel is obtained using Hamilton's principle and discretised with the help of nonlinear finite element method. The desired responses are evaluated through a direct iterative method. The present model has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of spherical panel have been discussed through numerical experimentations.

NURBS-based isogeometric analysis for thin plate problems

  • Shojaee, S.;Valizadeh, N.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.617-632
    • /
    • 2012
  • An isogeometric approach is presented for static analysis of thin plate problems of various geometries. Non-Uniform Rational B-Splines (NURBS) basis function is applied for approximation of the thin plate deflection, as for description of the geometry. The governing equation based on Kirchhoff plate theory, is discretized using the standard Galerkin method. The essential boundary conditions are enforced by the Lagrange multiplier method. Several typical examples of thin plate and thin plate on elastic foundation are solved and compared with the theoretical solutions and other numerical methods. The numerical results show the robustness and efficiency of the proposed approach.

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

A study on modeling and construction of Field Robot (Field Robot의 모델링과 구축에 관한 연구)

  • 임태형;양순용;이병룡;안경관;김승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.481-486
    • /
    • 2002
  • Automation of Field Robot has many advantages for efficiency and convenience. In this paper, mathematical equation of field robot is established and automation system is constructed. Hydraulic and Dynamic equation of field robot are constructed in this paper. Inputs of system are angle data from each link (boom, arm, bucket, swing) and pressure data from in, out port of each cylinder. Outputs of system are voltage into electo-proportional valve.

  • PDF