• Title/Summary/Keyword: lactis biovar

Search Result 7, Processing Time 0.017 seconds

Tetramethylpyrazine Production by Immobilized Culture of Lactococcus lactis subsp. lactis biovar. diacetilactis FCl

  • Lee, Ji-Eun;Woo, Gun-Jo;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.137-141
    • /
    • 1996
  • Acetoin and ammonia, the precursors of tetramethylpyrazine (TMP) having "meaty" or "roasted" flavors, were produced by the culture of Lactococcus lactis ssp. lactis biovar. diacetilactis FC1 in free and immobilized cell systems. Cells were immobilized using k-carrageenan and then were incubated at $34^{\circ}C$. The TMP productivity (0.34 g/l) and the conversion ratio (9.3%) of acetoin to TMP of the immobilized cell system were higher than those (0.24 g/l, 7.0%) of the free cell system. When the beads were activated for 12 h, the productivity of acetoin and TMP increased slightly.

  • PDF

Effect of Volume Concentration Ratio of Cell-free Medium on Tetramethylpyrazine Production by Lactococcus lactis subsp. lactis biovar. diacetilactis FC1

  • Lee, Ji-Eun;Woo, Gun-Jo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.191-194
    • /
    • 1994
  • Acetoin and ammonia, the precursors of tetramethylpyrazine (TMP) having "nutty " or "roasted" flavors, were produced by cultivating Lactococcus lactis ssp. lactis biovar. diacetilactis FC1. The effects of the volume concentration ratio (VCR) of cell-free medium on the formation of TMP were investigated using a rotary evaporator at $70^{\circ}C than at 80^{\circ}C$. As the VCR increased, the formation of TMP and the conversion ratio of acetoin to TMP increased. More TMP were formed at $70^{\circ}C than at 80^{\circ}C$. As the VCR increased, the concentration of acetoin decreased implying the formation of TMP from acetoin and ammonia.

  • PDF

Optimum Conditions for the Formation of Acetoin as a Precursor of Tetramethylpyrazine during the Citrate Fermentation by Lactococcus lactis subsp. lactis biovar. diacetilactis FC1

  • Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.202-206
    • /
    • 1991
  • To produce acetoin as a precursor of the tetramethylpyrazine flavor compound from citrate by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1, fermentation factors such as inital pH of culture media, temperature, concentration of Na-citrate, thiamin-HC1 and sugars were examined. The best acetoin production was achieved with initial pH in the culture media of 5.5, fermentation temperature of $34^{\circ}C$, Na-citrate concentration of 3%, addition of thiamin-HC1 at 2 mg/l and galactose as a carbon source. When fermentation was carried out under the optimum conditions, the exhaustion of Na-citrate and the production of acetoin took simultaneously and acetoin reached the maximum content, 80 mmole/l after 20 hours.

  • PDF

Optimum Conditions for the Production of Tetramethylpyrazine Flavor Compound by Aerobic Fed-batch Culture of Lactococcus lactis subsp. lactis biovar. diacetylactis FC1

  • HYONG-JOO LEE;KIM, KWANG-SOO;DONG-HWA SHON;DAE-KYUN CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.327-332
    • /
    • 1994
  • Optimum conditions for the production of acetoin and ammonia as the precursors of tetramethylpyrazine(TMP) were determined using Lactococcus lactis subsp. lactis biovar. diacetylactis FC1 in a modified Lactose-citrate broth containing galactose, citrate, and arginine. The cell growth and the productivity of acetoin and ammonia were remarkably increased in an aerobic culture with 10 $\mu M$ of hematin. For the optimum conditions of acetoin and ammonia production, the concentration of citrate and arginine were adjusted to 156 mM and 50 mM after 18 hr cultivation, and citrate and galactose to 156 mM and 50 mM after 36 hr cultivation, respectively. In these conditions, acetoin and ammonia were produced to the final concentration of 127 mM and 195 mM, which were the highest concentations, respectively. The optimum conditions of the TMP production were also determined as follows; 4 hours at 121, pH 8.3, and the maximal yield of TMP under these conditions was 0.81 g/l.

  • PDF

Optimum Conditions for the Formation of Ammonia as a Precursor of Tetramethylpyrazine by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1

  • Kim, Kyoung-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.281-284
    • /
    • 1991
  • To investigate the optimum conditions for the production of ammonia as a precursor of tetramethylpyrazine flavor compound from arginine by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1, fermentation factors such as initial pH of culture media, fermentation temperature, concentration of arginine-HC1, and sugars were examined. The optimum conditions were initial pH 5.5 of the culture media, fermentation temperature of $34^{\circ}C$, 6% (w/v) of arginine-HC1, and 1% (w/v) of galactose as a carbon source. Under the optimum fermentation conditions, 40 mmole/l of ammonia was produced after 40 h.

  • PDF

Optimum Conditions for the Formation of Tetramethylpyrazine Flavor Compound by Lactococcus lactis ssp. lactis biovar. diacetilactis FC1

  • Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.285-287
    • /
    • 1991
  • To produce the tetramethylpyrazine (TMP) flavor compound, Lactococcuss lactis subsp. lactis biovar. diacetilactis (L. diacetilactis) FC1 was cultivated in the TMP medium containing 3% (w/v) of Na-citrate and 6% (w/v) arginine-HC1 as substrates of acetoin and $NH_3$, respectively, which are the two precursors of the TMP. After 19-day fermentation at $34^{\circ}C$, 0.57 g/l or 4.19 mmole/l of the TMP was produced. This was the first result showing that the TMP could be produced by L. diacetilactis.

  • PDF

Identification of a Prophage-encoded Abortive Infection System in Levilactobacillus brevis

  • Feyereisen, Marine;Mahony, Jennifer;O'Sullivan, Tadhg;Boer, Viktor;van Sinderen, Douwe
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.322-327
    • /
    • 2020
  • Abortive infection systems (Abi) are phage resistance systems that can be prophage-encoded. Here, two genes encoding an Abi system were identified on a prophage sequence contained by the chromosome of the Levilactobacillus brevis strain UCCLBBS124. This Abi system is similar to the two-component AbiL system encoded by Lactococcus lactis biovar. diacetylactis LD10-1. The UCCLBBS124 prophage-derived Abi system (designated here as AbiL124) was shown to exhibit specific activity against phages infecting L. brevis and L. lactis strains. Expression of the AbiL124 system was shown to cause reduction in the efficiency of plaquing and cell lysis delay for phages of both species.