• Title/Summary/Keyword: lactate dehydrogenase

Search Result 904, Processing Time 0.026 seconds

Experimental Effects of SPATHOLOBI CAULIS on the Cerebral Blood Flow and Lactate Dehydrogenase Activity (계혈등(鷄血藤)이 뇌혈류량 및 Lactate Dehydrogenase 활성에 미치는 실험적 효과)

  • Lee Sang-Lock;Jeong Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • This Study was designed to investigate the effects of Patholobi Caulis on the change of regional cerebral blood flow (rCBF) and blood Pressure (MABP) in normal and Cerebral ischemic rats. And, this Study was designed to investigate the inhibition of lactate dehydrogenase (LDH) activity in neuronal cells. The results were as follows : In normal rats, Patholobi Caulis significantly increased rCBF in a dose-dependent manner, and MABP was somewhat increased. In ischemia rats, rCBF was significantly and stably increased by Patholobi Caulis (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. Patholobi Caulis significantly inhibited LDH activity in neuronal cells. It was suggested that Patholobi Caulis had an anti-ischemic effect through the improvement of cerebral hemodynamics and inhibitive effect on the brain damage.

Separation of Dehydrogenase Isozymes by Cellulose Acetate Electrophoresis (Cellulose Acetate 전기영동에 의한 수소이탈효소 Isozyme의 분리)

  • 박상윤;조동현
    • The Korean Journal of Zoology
    • /
    • v.15 no.3
    • /
    • pp.101-104
    • /
    • 1972
  • A simple and economical method for separation of lactate and malate dehydrogenase isozymes is described in detail. The method is based on cellulose acetate strip electrophoretic separation of the isozymes, tetrazolium reduction to purple formazan. Resolution is as good as in the experiment using expensive equipments.

  • PDF

Effects of Gamma Irradiation on the Fermentative Microorganisms and Lactate Dehydrogenase Activity in Kimchi at Different Fermentation Stages

  • Yook, Hong-Sun;Kim, Dong-Ho;Song, Hyun-Pa;Lee, Hyun-Ja;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.265-269
    • /
    • 2003
  • Gamma irradiation treatment was performed at the early and mid-fermentation stages of Kimchi preparation. Changes in fermentative microorganisms and lactate dehydrogenase activity during the fermentation periods were investigated to determine proper irradiation point for extending the shelf life of Kimchi. Initial levels of acid producing bacteria and yeast in Kimchi were 10$^4$ CFU g$^{-1}$ and 10$^1$ CFU g$^{-1}$ , and reached up to 10$^{9}$ CFU g$^{-1}$ after 15 days and 10$^{7}$ CFU g$^{-1}$ after fermentation for 30 days at 1$0^{\circ}C$, respectively. The radiation resistance of acid producing bacteria in the earlier stage (D$_{10}$ value was 0.87 kGy) was higher than at the midfermentation stage (after 10 days at 1$0^{\circ}C$, D$_{10}$ value was 0.69 kGy). Microbial growth and lactate dehydrogenase activity were inhibited significantly by gamma irradiation at the early fermentation stage of Kimchi and acidification was effectively delayed during the subsequent storage period. Although the growth of fermentative microorganisms was inhibited by gamma irradiation at the mid-fermentation stage of Kimchi, lactate dehydrogenase activity was maintained and acidification continued during the storage period.

Enzymatic Characterization of Bacillus cereus Lactate Dehydrogenase Isozymes Expressed in Escherichia coli (Bacillus cereus에서 유래한 Lactate Dehydrogenase 동질효소 유전자의 대장균 내 발현 및 효소특성 규명)

  • Jang, Myoung-Uoon;Park, Jung-Mi;Lee, Hong-Gyun;Lee, So-Ra;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • Lactate dehydrogenases (LDHs) have been highly focused for long time, due to their important roles in biochemical and metabolic pathways of cells. On the basis of genome-wide searching results, three putative LDH genes from Bacillus cereus ATCC 14579 genome have been PCR-amplified, cloned, and well-expressed in E. coli. All three BcLDH isozymes are supposed to share highly conserved catalytic amino acid residues in common $NAD^+$-dependent LDHs. Meanwhile, BcLDH1 consisting of 314 amino acids shares 86 and 49% of identities with BcLDH2 and 3, respectively. Interestingly, only BcLDH1 showed the converting activities between L-lactate and pyruvate in the presence of $NAD^+$ coenzyme, while the other isozymes are likely to have almost no activity. As a result, it was revealed that BcLDH1 can be a typical $NAD^+$-dependent L-lactate-specific dehydrogenase.

Lactate Can Modulate the Expression of Lactate Dehydrogenase and Aquaporin Genes in Mouse Preimplanation Embryos

  • Shin, Soo-Jung;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.16 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • It is suggested that carbohydrate metabolites may involve in the development of morula to blastocyst but many of the mechanisms are not unmasked. Two-cell stage embryos were collected and examined the effects of lactate on the development of blastocyst in vitro. The expression profiles of lactate dehydrognase (Ldh) genes and aquaporin (Aqp) genes were analyzed with RT-PCR. The successful development from morula to blastocyst was dependent on lactate concentrations. The expression profiles of Ldh genes were changed by the lactate concentration. Ldha was expressed in morula stage at 10 mM lactate, and in blastocyst stage at lactate free condition. Ldhb was expressed in morula stage at 10 mM and 20 mM lactate, and in blastocyst stage at 10 mM lactate. Aqp genes were also showed different expression patterns by the lactate concentrations. Aqp3 was expressed in hatching embryo at 120 hr post hCG administration (hph) which was cultured in BWW medium and lactate free condition. Aqp7 was expressed in hatching embryos at 120 hph which was cultured at 10 mM lactate condition. Also Aqp8 was expressed in hatching embryo at BWW and 20 mM lactate condition. Aqp9 was expressed in morula at BWW and 10 mM lactate condition, and in blastocyst at BWW. Based on these results, it is suggested that concentration of lactate in the medium and the level of lactate synthesis in embryo is critical factor for blastocoels formation. In addition it is suggested that LDH may involve the AQPs expression in embryos.

Iozyme Patterns of Lactate Dehydrogenase in Follicular Components (돼지체조직 및 난포구성분에 있어 Lactate Dehydrogenase Isozyme 양식)

  • 이중한;변태호;유형진;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.3
    • /
    • pp.257-262
    • /
    • 1993
  • Various tissue and follicular components were analyzed for the determination of lactate dehydrogenase(LDH) isozyme patterns by electrophoretic technique with chromogen reaction in the pig. Optimum conditions for the tissue homogenate and the storage were finally established. Small quantities of follicular components were analysed for typing of LDH isozymes by microelectrophoresis. Microelectrophoretic analysis showed that only LDH-1 was visible in the oocytes, all isozymes in cumulus masses, and LDH-1, 2 and 3 in follicular fluid. The results provide critical information on the LDH activity of various tissues and follicular components. Furthermore, t he developed methods should be useful the analysis of LDH in the small quantity of samples, especially in the oocyte, and easily applicable to the oocyte and early embryos of other domestic species.

  • PDF

호염성 세균의 생리적 특성

  • Song, Kyung-Sook;Lee, Jung-Im;Bae, Moo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.517.3-518
    • /
    • 1986
  • 국내 염장식품 및 염전으로부터 세균을 분리하여, 호염성 세균의 NaCl 농도에 따른 성장범위, 생리적 및 효소학적 특성을 조사하고자 했다. 염전으로부터 NaCl 20%배지에서 14주와 총 16종류의 젓갈류에서 NaCl 10% 배지로 56균주의 호염성 세균을 분리하여 0, 5, 10, 15, 20, 25% NaCl농도에서 성장률을 조사하고 최적온도 및 배지조성과 함께 동정에 필요한 생리실험을 하였다. 또한 세포의 효소로서 Lactate dehydrogenase, Glucokinase, Glucose-6-phosphate dehydrogenase, Alanine dehydrogenase, Isocitrate dehydrogenase 등의 특성도 조사하였다. 선별한 균주중 Acinetobacter sp, 등이 관찰 조사되었으며 최적 성장 NaCl농도는 10%이고, 최적온도는 3$0^{\circ}C$이며, 25% NaCl, 45$^{\circ}C$에서 자란 Halobacterium sp. 등이 분리되었다. 그중 Acinetobacter strain H6는 단백분해효소와 탄수화물 분해효소의 생성능이 15>10>20% NaCl순이며, 특히 Lactate dehydrogenase 활성은 2>3>1>OM NaCl 순으로 나타났고, NaCl 대신 KCl을 사용했을 때는 3>2>1> OM순으로 활성이 나타났다.

  • PDF

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic (반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구)

  • Sung, H.G.;Kim, D.K.;Bae, H.D.;Shin, H.T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.625-634
    • /
    • 2004
  • The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

Screening and Characterization of Lactate Dehydrogenase-producing Microorganism

  • Sung, Ha Guyn;Lee, Jae Heung;Shin, Hyung Tai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1411-1416
    • /
    • 2004
  • The objective of this work was to isolate a microorganism, able to produce high lactate dehydrogenase (LDH) activity, for use as a microbial feed additive. The LDH is an important enzyme for lactate conversion in the rumen, thereby possibly overcoming lactic acidosis owing to sudden increases of cereal in the diets of ruminants. In the present study, various bacterial strains were screened from a variety of environments. Among the isolated microorganisms, strain FFy 111-1 isolated from a Korean traditional fermented vegetable food called Kimchi showed the highest enzyme activity, along with retaining strong enzyme activity even in rumen fluid in vitro. Based on morphological and biochemical characteristics as well as compositions of cellular fatty acids plus API analyses, this strain was identified as Lactobacillus sp. The optimum temperature and pH for growth were found to be 30$^{\circ}C$ and pH 6.5, respectively. A maximum cell growth of 2.2 at $A_{650}$ together with LDH activity of 2.08 U per mL was achieved after 24 h of incubation. Initial characterization of FFy 111-1 suggested that it could be a potential candidate for use as a direct-fed microbial in the ruminant animals.

Cloning and Characterization of the Lactate Dehydrogenase Genes from Lactobacillus sp. RKY2

  • Lee, Jin-Ha;Choi, Mi-Hwa;Park, Ji-Young;Kang, Hee-Kyoung;Ryu, Hwa-Won;Sunwo, Chang-Sin;Wee, Young-Jung;Park, Ki-Deok;Kim, Do-Won;Kim, Do-Man
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.318-322
    • /
    • 2004
  • Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it can be inexpensively produced by fermentation. Two genes (ldhL and ldhD) encoding the L-(+) and D-(-) lactate dehydrogenases (L-LDH and D-LDH) were cloned from Lactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames of ldhL for and ldhD for the L and D-LDH genes were 962 and 998 bp, respectively. Both the L(+)- and D(-)-LDH proteins showed the highest degree of homology with the L- and D-lactate dehydrogenase genes of Lactobacillus plantarum. The conserved residues in the catalytic activity and substrate binding of both LDHs were identified in both enzymes.