• Title/Summary/Keyword: lack of penetration

Search Result 92, Processing Time 0.024 seconds

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

A Probability-Based Durability Analysis of Concrete Structures in Chloride Containing Environments (염해환경 콘크리트 구조물의 확률론적 내구성 해석)

  • Kwon, Ki-Jun;Kim, Dong-Baek;Jung, Sang-Hwa;Chae, Seong-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.51-56
    • /
    • 2007
  • In recent years, many research works have been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environments. In particular, the development of new procedures for probability-based durability analysis/design has proved to be very valuable. Although there is still a lack of relevant data, this approach has been successfully applied to some new concrete structures. In this paper, the equation used for modelling of the chloride penetration was based on Fick's Second Law of Diffusion in combination with a time dependent diffusion coefficient. The probability analysis of the durability performance was performed by use of a Monte Carlo Simulation. The procedure was applied to an example based on limited data gathered in this country. The influences of each parameter on the durability of concrete structures are studied and some comments for durability design are given. The new procedure may be very useful in designing an important concrete structures in chloride containing environments. Also it may help to predict the service life of concrete structures under a given probability of failure.

A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code (입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구)

  • You, Kwang Ho;Lee, Chang Su;Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

Integrated QR Payment System (QRIS): Cashless Payment Solution in Developing Country from Merchant Perspective

  • Nathan Eleazar Rafferty;Ahmad Nurul Fajar
    • Asia pacific journal of information systems
    • /
    • v.32 no.3
    • /
    • pp.630-655
    • /
    • 2022
  • This paper examines the integrated QR code payment service (QRIS) adoption by retailers in Indonesia. Indonesia started its cashless journey in 2017 by using electric money in card form. As the country keeps developing, Indonesia has planned to integrate its payment towards a cross-border payment using QR codes by 2025 in the South East Asian region. Facing government vision, MSMEs that act as the significant economy wheel in Indonesia was required to be prepared to face the multi-cultural, multi-currency, and the new tech innovation for doing transactions. However, as a developing country, Indonesia faced significant problems with its infrastructure, which made it hard for merchants to access digital payment. As infrastructure was a common problem for developing countries, Indonesia also faced financial inclusion, lack of digital knowledge, a high amount of cash use, and socialization that made low digital payment penetration. Therefore, as there was a need to increase digital payment penetration for ASEAN integrated payment, this study found that merchant compatibility, facilitating conditions, trust, and relative advantages are drivers for MSMEs using this payment method. Further, this research provides propositions for banks, financial institutions, and governments to develop and evolve towards a cashless ecosystem, especially for a country lacking infrastructure.

A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones (특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.

Combustion and Spray Characteristics of Jet in Crossflow in High-Velocity and High-Temperature Crossflow Conditions (고온고속기류 중에 수직 분사되는 액체제트의 연소 및 분무특성)

  • Yoon, Hyun Jin;Ku, Kun Woo;Kim, Jun Hee;Hong, Jung Goo;Park, Cheol Woo;Lee, Choong Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • A jet in a crossflow (JICF) has been extensively studied because of its wide applications in technological systems, including fuel injection into a ram-combustor. However, in the case of insufficient mixing performance of the liquid jet into the crossflow, the flame in a ram-combustor is unstable. In this study, the nonuniform flame and combustion instabilities due to lack of mixing performance were experimentally investigated. By performing correlations to predict the penetration height and break-up point, the spray and mixing characteristics of JICF have been studied. In particular, the improved correlations of penetration height are proposed in two distinctive domains depending on the X/d location of the crossflow.

Driveability Analysis of Driven Steel Tublar Piles (타입 강관말뚝의 항타관입성 분석)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.123-132
    • /
    • 2003
  • The final purpose of driveability analysis is to confirm whether a selected hammer drives a pile to a desired penetration depth and/or capacity without damage. The capacities from static analysis methods are meaningless if the pile cannot be driven to the required design depth and the ultimate capacity without damage. It often occurs that there are big differences between the capacities from measurements and calculations. It may be because the driveability is not evaluated due to the lack of engineers' understanding of the driveability of pile driving. The engineers in the field sometimes assume simply the penetration depth with standard penetration value only. In this study some test pilings with dynamic pile loading tests were performed to give an understanding about the driveability. The influence factors(driving resistance, impedance, material strength, hammer) on the driveability of steel piles were analysed with the monitoring data obtained from the dynamic load tests. It was shown that more cost-effective design can be made in case the driveability analysis and high strength steel pile are appropriately adopted in the design.

A Study of Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Immersion Condition (인공해수 침지조건에 따른 부식촉진시험과 염화물침투해석에 대한 연구)

  • Park, Sang-Soon;Jeong, Ji-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • Steel reinforcement buried in concrete structure in submerged zone does not easily become corroded due to lack of dissolved oxygen. For that reason, accelerated corrosion test in submerged state is performed with an electrochemical method, which is not suitable for actual corrosion mechanism and makes it difficult to find relevance with long-term behavior. In this study, accelerated corrosion test was performed with the temperature and chloride concentration as main variables in order to establish a method for accelerated corrosion test in submerged zone. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. The accelerated corrosion test result showed that temperature had the most dominant influence. To determine the chloride content, chloride concentration by depth in the test sample was measured. With the same conditions, chloride penetration interpretation was performed by DuCOM, a FEM durability interpretation program. Also, a test was performed to measure dissolved oxygen according to soaking conditions of artificial seawater, which was used for verifying the validity of the accelerated corrosion test result.

Statistical Evaluation of Validity of KS Asphalt Penetration Grade System (통계적 분석을 통한 KS 아스팔트 침입도 규격의 문제점 고찰)

  • Kim, Kwang-Woo;Lee, Woo-Hyun;Jung, Jae-Hun;Doh, Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.125-133
    • /
    • 2006
  • In this study, the Korean Industrial Standard(KS) penetration grade system was examined to evaluate its statistical validity. It was found from this limited study that the system has no gap between each grade, the binder falling out of limit trespasses into other binder grade. Therefore, many products can have similar property level with an adjacent grade even though the mean value is within the specification limit. It was also found out that the equal range setup of each grade, such as 20 for 40-60, 60-80, 80-100, has no statistical foundation. Since KS penetration grade is defined without gap between each grade, the producer must maintain the coefficient of variation below the level by the ASTM system to satisfy the normal quality control limit of products. Due to its lack of a gap between grades, higher percentage of products will be duplicated even if the mean is at the median of the specification limits due to material's quality uncertainty. Especially if the mean moves toward the upper limit, a half or more of the binder grade will be overlapped with the upper binder grade. Therefore, KS penetration specification should be immediately modified by statistically valid methodologies.

  • PDF

A fuzzy expert system for diagnosis assessment of reinforced concrete bridge decks

  • Ramezanianpour, Ali Akbar;Shahhosseini, Vahid;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.281-303
    • /
    • 2009
  • The lack of safety of bridge deck structures causes frequent repair and strengthening of such structures. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of realistic and accurate assessment system for the bridge decks. The purpose of the present research was to develop a realistic expert system, called Bridge Slab-Expert which can evaluate reasonably the condition as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the structural and environmental effects. The diagnosis assessment of deck slabs due to structural and environmental effects are developed based on the cracking in concrete, surface distress and structural distress. Fuzzy logic is utilized to handle uncertainties and imprecision involved. Finally, Bridge Slab-Expert is developed for prediction of safety and remaining service life based on the chloride ions penetration and fick's second law. Proposed expert system is based on user-friendly GUI environment. The developed expert system will allow the correct diagnosis of concrete decks, realistic prediction of service life, the determination of confidence level, the description of condition and the proposed action for repair.