• Title/Summary/Keyword: laccase

Search Result 300, Processing Time 0.028 seconds

Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent

  • Teerapatsakul, Churapa;Chitradon, Lerluck
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.260-268
    • /
    • 2016
  • Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.

Laccase Production Using Pleurotus ostreatus 1804 Immobilized on PUF Cubes in Batch and Packed Bed Reactors: Influence of Culture Conditions

  • Prasad K. Krishna;Mohan S. Venkata;Bhaskar Y. Vijaya;Ramanaiah S. V.;Babu V. Lalit;Pati B. R.;Sarma P. N.
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.301-307
    • /
    • 2005
  • The feasibility of laccase production by immobilization of Pleurotus ostreatus 1804 on polyurethane foam (PUF) cubes with respect to media composition was studied in both batch and reactor systems. Enhanced laccase yield was evidenced due to immobilization. A relatively high maximum laccase activity of 312.6 U was observed with immobilized mycelia in shake flasks compared to the maximum laccase activity of free mycelia (272.2 U). It is evident from this study that the culture conditions studied, i.e. biomass level, pH, substrate concentration, yeast extract concentration, $Cu^{2+}$ concentration, and alcohol nature, showed significant influence on the laccase yield. Gel electrophoretic analysis showed the molecular weight of the laccase produced by immobilized P. ostreatus to be 66 kDa. The laccase yield was significantly higher and more rapid in the packed bed reactor than in the shake flask experiments. A maximum laccase yield of 392.9 U was observed within 144 h of the fermentation period with complete glucose depletion.

Enzymatic Characteristics of Laccase from White Rot Fungus, Flammulina velutipes (백색부후균(白色腐朽菌) Flammulina velutipes로 부터 추출(抽出)한 리그닌 분해효소(分解酵素)의 효소적(酵素的) 특성(特性))

  • Suh, Dal-Sun;Lee, Jae-Sung;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 1986
  • The production media and the enzymatic charateristics of laccase from Flammulina velutipes were investigated. The activity of laccase during incubation reached to the maximum at the 40 days of incubation in the case of Barley straw medium. The maximum laccase activity in Barley straw medium was 5 and 16 times higher than those in Onion basic and Sawdust media, respectively. The laccase from Flammulina velutipes has the optimum pH of 6.6 and showed to be stable at relatively broad pH range. 4.5-9.5. Temperature stability showed that above 96% activity could be preserved after holding at 40$^{\circ}C$ for 40 minutes. At the above 70$^{\circ}C$, the laccase activity decreased very rapidly. The Km value of the laccase was estimated to be 28.0 mM which is much higher than that of the laccase from Pleurotus ostreatus. Organic solvents for precipitiation of the enzyme did not inactivation the laccase. Sodium azide which was added for preventing microbial deterioration affected significantly the inactivation of laccase, but this activity was recovered completely by precipitating the enzyme with acetone.

  • PDF

Purification and Characterization of Overproduced E. coli Laccase (과량 생산된 대장균 laccase의 정제 및 특성)

  • Hong, June-Hyuk;Kim, Hyun-Jung;Kim, Woo-Yeon
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.107-110
    • /
    • 2007
  • The putative laccase gene, yacK of Escherichia coli, K-12 is not expressed in lab culture conditions. The laccase gene was amplified by PCR and subcloned into pET28a vector. The laccase overproduced in E. coli harboring pET28a was purified by His-affinity column chromatography. The purified laccase, which has the apparent molecular weight of 55,000 on the SDS-polyacrylamide gel showed enzyme activity on the guaiacol solution and agar plate. Optimum temperature and pH were around 65$^{\circ}C$ and 5.0, respectively.

Enhancement of Laccase Production from Wood-Rotting Fungus by Co-Culture with Trichoderma longibrachiatum

  • Jung, Hyun-Chae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.210-220
    • /
    • 2019
  • This work aimed to evaluate the influence of culture conditions on laccase production in the co-culture of wood-rotting fungus with Trichoderma sp. The effects of infection extent, infection time, and culture filtrate of Trichoderma sp. on the laccase production by wood-rotting fungus in co-culture were examined. T. rubrum LKY-7 and T. longibrachiatum were selected as fungi which are effective in co-culture for laccase production. A significant increase in laccase activity was observed when T. rubrum LKY-7 was co-cultured with T. longibrachiatum in glucose-peptone liquid medium, yielding an increase of more than 5 times in laccase activity, as compared with control. Laccase production by T. rubrum LKY-7 during co-culturing was significantly influenced by the infection extent and the infection time of T. longibrachiatum. Maximal laccase activity was obtained when T. rubrum LKY-7 culture was infected by T. longibrachiatum after 3 days of cultivation at an inoculum size ratio of 0.5 to 1. The addition of culture filtrate or autoclaved mycelium of T. longibrachiatum to T. rubrum LKY-7 culture did not significantly enhance laccase production by T. rubrum LKY-7 as compared with control (mono cultures of T. rubrum LKY-7).

Selection of laccase over-secreting mutant

  • Kim, Soon-Ja;Choi, Hyoung-Tae
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.146-148
    • /
    • 1995
  • Coprinus congregatus has a membrane-associated laccase which is not secreted into culture media. A mutant monokaryon obtained, by U. V. irradiation followed by protoplast generation and regeneration method, was successfully isolated. When the mutant was grown on a agar plate or in a liquid medium, it secreted laccase while the wild type did not under the same growth conditions. The laccase of the mutant was compared with that of wild type did not under the same growth conditions. The laccase of the mutant was compared with that of wild type of native PAGE analysis, and showed identical mobility.

  • PDF

Cloning of laccase Gene Fragment from Coprinus congregatus by PCR (Coprinus congregatus에서 PCR에 의한 laccase 유전자의 부분 cloning)

  • 김순자;임영은;최형태
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.25-27
    • /
    • 1999
  • Degenerate primers corresponding to the sequences of the copper-binding regions in the fungal laccases were used to isolatc laccase gene specific fragment by PCR in Coprinus congregahts. A 144 bp DNA hagrnent was cloned and was identified to have 60-69 % homology with other fungal laccase genes. The predicted amino acid sequcnces showed 68-75% homology with other fungal laccase proteins.

  • PDF

Characterization of immobilized laccase and its catalytic activities (고정된 laccase의 특성 및 촉매효과)

  • Hyung Kyung Hee;Shin Woonsup
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • Copper-containig enzyme, laccase (Rhus vernicifera) was immobilized onto gold electrode using self-assembly technique and its surface properties and catalytic activities were examined. Laccase is an oxidoreductase capable to oxidize diphenols or diamines by 4-electron reduction of molecular oxygen without superoxide or peroxide intermediates. The electrode surface were modified by $\beta-mercaptopropionate$ to have a net negative charge in neutral solution and positively charged laccase (pI=9) was immobilized by electrostatic interaction. The successful immobilization was confirmed by cyclic voltammograms which showed typical surface-confined shapes and behaviors. The amount of charge to reduce the surface was similar to the charge calculated assuming the surface being covered by monolayer. The activity of the immobilized enzyme was tested by the capbility of oxidizing a substrate, ABTS (2,2-azine-bis-(3-ethylbenzthioline-6-sulfonic acid) and it was maintained for $2\~3$ days at $4^{\circ}C$. The immobilzed laccase showed about $10\~15\%$ activity compared to that in solution. The laccase-modified electrode showed the activity of elefoocatalytic reduction of oxygen in the presence of mediator, $Fe(CN)_6^{3-}$ The addtion of azide which is an inhibitor of laccase compeletly eliminated the catalytic current.

Screening and Evaluating of Wood-Rotting Fungi for Lignin Degradation and Ligninolytic Enzyme Production (II) - Laccase Production by Lignin-Degrading Fungi - (리그닌분해(分解)와 리그닌분해효소(分解酵素) 생산(生産)을 위한 목재부후균(木材腐朽菌)의 선발(選拔)과 평가(評價) (II) - 리그닌분해균(分解菌)에 의한 laccase 생산(生産) -)

  • Jung, Hyeun-Chae;Park, Seur-Kee;Kim, Byeong-Soo;Park, Chong-Yawl
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 1996
  • 리그닌분해능(分解能)이 높은 균주(菌株)로 선발(選拔)된 Coriolus versicolor-13 (CV-13), LKY-7 및 LKY-12세 균주(菌株)에 대하여 균체외(菌體外) laccase 생산(生産)을 검토(檢討)하였다. Glucose-peptone broth에서 균체외(菌體外) laccase활성(活性)은 CV-13의 경우 3일 이상배양후(以上培養後)에 나타났고 LKY-7과 LKY-12균주(菌株)의 laccase 활성(活性)은 배양(培養) 2일째에 검출(檢出)되었다. 탄소원(炭素源)으로서는 maltose가 glucose와 비슷한 laccase 생산효과(生産效果)를 나타냈고 질소원(窒素源)으로서는 유기태질소(有機態窒素)가 무기태(無機態) 질소(窒素)보다 효과적(效果的)이었다. Laccase 유도물질(誘導物質)로서는 2,5-Xylidine이 가장 우수하였으며 1mM 이하(以下)의 농도(濃度)에서는 유도효과(誘導效果)가 크게 나타났으나 1.5mM 이상(以上)의 농도(濃度)에서는 laccase생산(生産)이 억제(抑制)되었고, 균사생장(菌絲生長) 초기(初期)에 첨가(添加)하는 것이 효과적(效果的)으로 나타났다. SDS-PAGE 후, CV-13 균주(菌株)의 균체외(菌體外) 단백질(蛋白質)에서는 약 69, 66, 25, 23, 19kDa 크기의 laccase band가 5개 나타났고 LKY-7 균주(菌株)에서는 27kDa과 19kDa 크기의 2개 band가, LKY-12 균주(菌株)에서는 22, 20, 17kDa 크기의 laccase band가 3개 나타났다.

  • PDF

Production of Extracellular Laccase by Lignindegrading Basidiomycete Coriolus versicolor CV3 (리그닌 분해균 Coriolus versicolor CV3에 의한 Laccase의 생산)

  • Kwon, Soon Kyung;Yoon, Min Ho;Choi, Woo Young
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.2
    • /
    • pp.157-163
    • /
    • 1991
  • The cultural conditions in shake flasks were investigated under which maximum amounts of laccase produced by a strain of white-rot fungus Coriolus versicolor CV3. The enzyme yields on potato-malt extract medium by the fungus were higher than on other media consisted of onion infusion or malt extract, with maximum activity of $1.50unit/m{\ell}$ culture or 119.5 unit/g mycelium at 11 days of incubation. Maximum yields of laccase and growth were obtained by supplementation of yeast extract or potassium nitrate to the potato-malt extract medium. Addition of 2.5-xylidine at $4{\times}10^{-4}M$ concentration to the medium induced the laccase production 3.1-fold higher than the basal level, while the mycelial growth was somewhat repressed. The pH optimum for the growth and laccase formation by the fungus was between pH 4 to 4.5.

  • PDF