• Title/Summary/Keyword: lac I gene

Search Result 58, Processing Time 0.026 seconds

Molecular Cloning of $\beta$-Galactosidase Gene from Neisseria lactamica 2118 into Escherichia coli MC 1061 (Neisseria lactamica 2118의 $\beta$-galactosidase 유전자의 대장균으로의 클로닝)

  • Lee, Jong-Su
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.37-45
    • /
    • 1992
  • The gene coding for $\beta$-galactosidase of Neisseria lactamica 2118 was cloned into Escherichia coli MC 1061. The isolated 6.5 Kb EcoR I fragement and 7.2 Kb BamH I fragment of chromosomal DNA in Southern hybridization were ligated to a vector plasmid pBR322 and then transformed into Escherichia coli MC 1061 cells. Finally, I obtained three clones as $\beta$-galactosidase positive clone by colony hybridization and Southern hybridization($\beta$-galactosidase probe: lac Z gene of pMC1871). Three recombinant plasmids(pNL.13. 17 and 24) were found to contain the 7.2Kb BamH I fragment originated from Neisseria lactamica 2118 chromosomal DNA by Southern hybridization and pNL 24 was showed high homology to probe especially and also its physical map was constructed.

  • PDF

Transcriptional Regulation of the Schizosaccharomyces pombe Gene Encoding Glutathione S-Transferase I by a Transcription Factor Pap1

  • Kim Hong-Gyum;Kim Byung-Chul;Kim Kyunghoon;Park Eun-Hee;Lim Chang-Jin
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.353-356
    • /
    • 2004
  • In a previous study, a gst gene was isolated from the fission yeast Schizosaccharomyces pombe. This gene was dubbed gstI, and was characterized using the gstI -lacZ fusion plasmid pYSH2000. In this work, four additional fusion plasmids, pYSHSDl, pYSHSD2, pYSHSD3 and pYSHSD4, were constructed, in order to carry (respectively) 770, 551, 358 and 151 bp upstream regions from the translational initiation point. The sequence responsible for induction by aluminum, mercury and hydrogen peroxide was located in the range between -1,088 and -770 bp upstream of the S. pombe gstI gene. The same region was identified to contain the nucleotide sequence responsible for regulation by Papl, and has one puta­tive Papl binding site, TTACGTAT, located in the range between $-954\~-947$ bp upstream of the gstI gene. Negatively acting sequences are located between -1,088 and -151 bp. These findings imply that the Papl protein is involved in basal and inducible transcription of the gstI gene in the fission yeast S. pombe.

Molecular Cloning of Antagonistic Genes in Pseudomonas maItophiliQ B-14 (토양병해 길항성 Pseudomonas maltophilia B-14의 길항유전자탐색)

  • 구본성;서영우;윤상홍;박경수;은무영;김용환;오상우;류진창;은무영
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.619-624
    • /
    • 1992
  • Tn5 lac 삽입으로 채소입고병원균에 길항력이 약화된 T-67 및 고추역병균과 참깨역병균에 길항력이 약화된 T-81의 Tn5 lac 유전자 일부와 오른쪽 말단에 있는 길항관련 유전자의 flanking sequence가 cloning된 pAG67 및 pAG81 clone을 선발하였고, pAG67 및 pAG81 clone된 길항관련 유전자의 flanking sequence를 야생 길항균 Pseudomonas maltophilia B-14의 DNA를 probe로 사용하여 Southern hybridization으로 확인하였으며, 제한효소 지도를 작성하여 8Kb 및 4Kb 크기의 flanking sequence가 cloning되었음을 확인하였다. pAG6 및 pAG81의 flanking sequence를 EcoRi-BglII와 EcoRI-MpaI으로 분리하여 유전자 은행으로부터 길항관련 유전자가 cloning된 cosmid clone 7개주를 선발하였다.

  • PDF

Molecular Cloning of Bacillus stearothermophilus cdd Gene Encoding Thermostable Cytidine/Deoxycytidine Deaminase (Bacillus stearothermophilus 의 내열성 시티딘/디옥시시티딘 디아미나제를 코드하는 cdd 유전자의 클로닝)

  • Soo, Chang-Jong;Song, Bang-Ho;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.334-342
    • /
    • 1989
  • The Bacillus stearothermophilus cdd gene encoding cytidine deaminase (cytidine/2'-deoxycytidine aminohydrolase; EC 3.5.4.5) was isolated through shot gun cloning by oomplementation of an E. coli cdd mutation. Primarily 3.0 kbp of the exogenote was cloned into the Pstl site of pBR322 (pJSC101). By subsequent deletion and subcloning from the insert of pJSC101 with cdd$^+$ and tetracycline resistancy, about 1.35 kbp of the EcoRI$_1$/PstI$_2$ fragment containing the cdd gene was isolated as pJSC201. The minicell experiment revealed a molecular mass of 33,000 dalton for polypeptide from the cloned DNA fragment complementing the cdd gene. From the lacZ fusion of 550 bp fragment of the EcoRI$_1$/AuaI as a putative promoter region, the transcription direction of the cdd gene on pJSC201 is from EcoRI towards the PstI sites, When the cdd gene was expressed in B. subtilis ED4O (cdd$^-$, pyr$^-$) by transformation with the E. coli-B. subtilis shuttle vector, the gene expression occured more efficiently than in E. coli and the gene appears to be stably maintained in B. subtitis as well as in E. coli.

  • PDF

Incapability of Utilizing Galactose by pgs1 Mutation Occurred on the Galactose Incorporation Step in Saccharomyces cerevisiae

  • Rho, Min-Suk;Su, Xuefeng;Lee, Yoon-Shik;Kim, Woo-Ho;Dowhan, William
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.84-91
    • /
    • 2006
  • A Saccharomyces cerevisiae pgs1 nulI mutant, which is deficient with phosphatidyl glycerol (PG) and cardiolipin (CL) biosynthesis, grows well on most fermentable carbon sources, but fails to grow on non-fermentable carbon sources such as glycerol, ethanol, and lactate. This mutant also cannot grow on galactose medium as the sole carbon source. We found that the incorporation of $[^{14}C]-galactose$, which is the first step of the galactose metabolic pathway (Leloir pathway), into the pgs 1 null mutant cell was extremely repressed. Exogenously expressed PGS1 (YCpPGS1) under indigenous promoter could completely restore the pgs1 growth defect on non-fermentable carbon sources, and dramatically recovered $[^{14}C]-galactose$ incorporation into the pgs1 mutant cell. However, PGS1 expression under the GALl promoter $(YEpP_{GAL1}-PGS1myc)$ could not complement pgs1 mutation, and the GAL2-lacZ fusion gene $(YEpP_{GAL2}-lacZ)$ also did not exhibit its $\beta-galactosidase$ activity in the pgs1 mutant. In wild-type yeast, antimycin $A(1\;{\mu}g/ml)$, which inhibits mitochondrial complex III, severely repressed not only the expression of the GAL2-lacZ fusion gene, but also uptake of $[^{14}C]-galactose$. However, exogenously expressed PGS1 partially relieved these inhibitory effects of antimycin A in both the pgs1 mutant and wild-type yeast, although it could not basically restore the growth defect on galactose by antimycin A. These results suggest that the PGSI gene product has an important role in utilization of galactose by Gal genes, and that intact mitochondrial function with PGS1 should be required for galactose incorporation into the Leloir pathway. The PGS1 gene might provide a clue to resolve the historic issue about the incapability of galactose with deteriorated mitochondrial function.

Isolation of Lactococcus lactis Strain with ${\beta}$-Galactosidase Activity from Kimchi and Cloning of lacZ Gene from the Isolated Strain

  • Park, Rae-Jun;Lee, Kwang-Hee;Kim, Su-Jung;Park, Jae-Yong;Nam, Su-Jin;Yun, Han-Dae;Lee, Hyong-Joo;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Park, Yun-Hee;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.157-161
    • /
    • 2002
  • A lactic acid bacteria with ${\beta}$-gal activity was isolated from Kimchi, a traditional fermented vegetable food in Korea. The isolate was identified as a Lactococcus lactis strain and named L. lactis A2. The gene encoding ${\beta}$-gal of L. lactis A2 was cloned as a 5.8 kb PstI fragment. DNA sequencing identified the complete lacA (galactoside acetyltransferase)-lacZ (${\beta}$-galactosidase) genes together with the 3' part of upstream galT (galactose-1-phosphate uridyltransferase), and the 5'region of downstream galE (UDP-galactose-4-epimerase) genes. L. lactis A2 had the same gal/lac operon structure as in L. lactis subsp. lactis 7962. Other genes of the Leloir pathway are most likely to be located in the 5'upstream of the 5.8 kb fragment on the A2 chromosome. Sequences downstream of galE were different from those of L. lactis subsp. lactis 7962.

Expression of mue Gene on Plasmid pKM101 and pSL4 (플라스미드 pKM101 과 pSL4 의 muc 유전자의 발현에 관한 연구)

  • 전홍기;황유경;이상률;백형석
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.371-376
    • /
    • 1992
  • Plasmid pSL4 of plasmid pKM 101 mutant have high protection effects and mutagenecity for UV and methyl methanesulfonate, The mucA gene and a pan of mucE gene of pKM 101 and pSL4 were sucloned onto lacZ' fusion vector pMC874 and the hybrid plasmids pBH31 and pBH30 were selected. These plsmids were intrduced into $recA^{+}lexA^{-}$, $recA^{-}와lexA^{+}$ strains and determined the activity of $\beta$-galactosidase for UV. In $recA^{+}lexA^{+}$ strain.$\beta$-galactosidase activity of pBH30 included mue region of pSL4 was higher thall pBH31 inclued muc region of pKM 10 I and the tf-galactosidase of two plasmids was not induced in reeA and leeA mutants with or without UV illumination. Without UV illumination. the .$\beta$-galactosidasc of pBH30 was expressed a little higher level than that of pBH3L We suggest that the functional difference of pKM 10l and pSL4 are due to the variety of mue regulatory region. Also. a plasmid pBH 100 earring umuC' -lacZ' gene fusion was constructed in vitro to study the regulation of the umu operon. It was shown that the umu operon is induced by UV and is regulated by the reeA and lexA genes.

  • PDF

Zygotic Expression of c-myc Gene in Mouse Early Embryos: Functional Role of c-myc Promoter (생쥐 초기배아에서 c-myc Proto-Oncogene Promoter의 기능적 활성화)

  • Park, Ki-Soo;Kang, Hae-Mook;Shim, Chan-seob;Sun, Woong;Kim, Jae-man;Lee, Young-Ki;Kim, Kyung-jin
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.550-556
    • /
    • 1995
  • The c-myc proto-oncogene is Involved In the control of normal cell proliferation and differentiation of many cell lineages. Although it has heen suggested that c-myc may play an important role in the mammalian early development, it Is unclear whether the embryonic c-myc mRNA is originated from zygotic gene expression or stored maternal message. Thus, we have construded expression vectors, In which the 5, flanking sequences including c-myc promoter region and a large non-coding exon I are fused 'sith E. coli lacZ gene that encedes $\beta$-galactosldase as a reporter. As c-myc exon I contains a modulatory sequence, we designed t, vo types of vectors (pcmyc.Gall and pcmyc-Ga12) to examine the role of exon I in c-myc expression. The former contains the complete exon I and the later has a deletion in 40 bp of modulator sequence located In the exon I of c-myc These vectors were microInjected into fertilized one-cell embryos and $\beta$-galactosidase activity was examined by X-gal staining during early embryogenesis. $\beta$-galactosidase activity derived from c-myc promoter was decreased at two-cell stage. The expression level directed by pcmyc- Ga12 was similar to that of pcmyc-Gal1, indicating that the medulatory sequence in exon I may not be Involved at least In the regulation of embryonic c-myc expression. In summary, the present study indicates that the c-myc promoter is functional at the early stage embryo, and the regulation of c-myc expression is under the control of "zygotic" clock of preimplantation mouse embryos.e embryos.

  • PDF

Recombination and Expression of VP1 Gene of Infectious Pancreatic Necrosis Virus DRT Strain in a Baculovirus, Hyphantria cunea Nuclear Polyhedrosis Virus (전염성 췌장괴저바이러스 DRT Strain VP1유전자의 Baculovirus Hyphantria cunea Nuclear Polyhedrosis Virus에 재조합과 발현)

  • Lee, Hyung-Hoan;Chang, Jae-Hyeok;Chung, Hye-Kyung;Cha, Sung-Chul
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.2
    • /
    • pp.239-255
    • /
    • 1997
  • Expression of the cDNA of the VP1 gene on the genome RNA B segment of infectious pancreatic necrosis virus (IPNV) DRT strain in E. coli and a recombinant baculovirus were carried out. The VP1 gene in the pMal-pol clone (Lee et al. 1995) was cleaved with XbaI and transferred into baculovirus transfer vector, pBacPAK9 and it was named pBacVP1 clone. The VP1 gene in the pBacVP1 clone was double-digested with SacI and PstI and then inserted just behind T5 phage promoter and the $6{\times}His$ region of the pQE-3D expression vector, and it was called pQEVPl. Again, the $6{\times}$His-tagged VP1 DNA fragment in the pQEVP1 was cleaved with EcoRI and transferred into the VP1 site of the pBacVP1, resulting pBacHis-VP1 recombinant. The pBacHis-VP1 DNA was cotransfected with LacZ-Hyphantria cunea nuclear polyhedrosis virus (LacZ-HcNPV) DNA digested with Bsu361 onto S. frugiperda cells to make a recombinant virus. One VP1-gene inserted recombinant virus was selected by plaque assay. The recombinant virus was named VP1-HcNPV-1. The $6{\times}$His-tagged VP1 protein produced by the pQEVP1 was purified with Ni-NTA resin chromatography and analyzed by SDS-PAGE and Western blot analysis. The molecular weight of the VP1 protein was 94 kDa. The recombinant virus, VP1-HcNPV-1 did not form polyhedral inclusion bodies and expressed VP1 protein with 95 kDa in the infected S. frugiperda cells, which was detected by Western blot. The titer of the VP1-HcNPV-1 in the first infected cells was $2.0{\times}10^5\;pfu/ml$ at 7 days postinfection.

  • PDF