• Title/Summary/Keyword: labeling algorithm

Search Result 261, Processing Time 0.027 seconds

Performance Evaluation for One-to-One Shortest Path Algorithms (One-to-One 최단경로 알고리즘의 성능 평가)

  • 심충섭;김진석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.11
    • /
    • pp.634-639
    • /
    • 2002
  • A Shortest Path Algorithm is the method to find the most efficient route among many routes from a start node to an end node. It is based on Labeling methods. In Labeling methods, there are Label-Setting method and Label-Correcting method. Label-Setting method is known as the fastest one among One-to-One shortest path algorithms. But Benjamin[1,2] shows Label-Correcting method is faster than Label-Setting method by the experiments using large road data. Since Graph Growth algorithm which is based on Label-Correcting method is made to find One-to-All shortest path, it is not suitable to find One-to-One shortest path. In this paper, we propose a new One-to-One shortest path algorithm. We show that our algorithm is faster than Graph Growth algorithm by extensive experiments.

Fast XML Encoding Scheme Using Reuse of Deleted Nodes (삭제된 노드의 재사용을 이용한 Fast XML 인코딩 기법)

  • Hye-Kyeong Ko
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.835-843
    • /
    • 2023
  • Given the structure of XML data, path and tree pattern matching algorithms play an important role in XML query processing. To facilitate decisions or relationships between nodes, nodes in an XML tree are typically labeled in a way that can quickly establish an ancestor-descendant on relationship between two nodes. However, these techniques have the disadvantage of re-labeling existing nodes or recalculating certain values if insertion occurs due to sequential updates. Therefore, in current labeling techniques, the cost of updating labels is very high. In this paper, we propose a new labeling technique called Fast XML encoding, which supports the update of order-sensitive XML documents without re-labeling or recalculation. It also controls the length of the label by reusing deleted labels at the same location in the XML tree. The proposed reuse algorithm can reduce the length of the label when all deleted labels are inserted in the same location. The proposed technique in the experimental results can efficiently handle order-sensitive queries and updates.

Illumination Compensation Algorithm based on Segmentation with Depth Information for Multi-view Image (깊이 정보를 이용한 영역분할 기반의 다시점 영상 조명보상 기법)

  • Kang, Keunho;Ko, Min Soo;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.935-944
    • /
    • 2013
  • In this paper, a new illumination compensation algorithm by segmentation with depth information is proposed to improve the coding efficiency of multi-view images. In the proposed algorithm, a reference image is first segmented into several layers where each layer is composed of objects with a similar depth value. Then we separate objects from each other even in the same layer by labeling each separate region in the layered image. Then, the labeled reference depth image is converted to the position of the distortion image view by using 3D warping algorithm. Finally, we apply an illumination compensation algorithm to each of matched regions in the converted reference view and distorted view. The occlusion regions that occur by 3D warping are also compensated by a global compensation method. Through experimental results, we are able to confirm that the proposed algorithm has better performance to improve coding efficiency.

Bar Code Location Algorithm Using Pixel Gradient and Labeling (화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘)

  • Kim, Seung-Jin;Jung, Yoon-Su;Kim, Bong-Seok;Won, Jong-Un;Won, Chul-Ho;Cho, Jin-Ho;Lee, Kuhn-Il
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1171-1176
    • /
    • 2003
  • In this paper, we propose an effective bar code detection algorithm using the feature analysis and the labeling. After computing the direction of pixels using four line operators, we obtain the histogram about the direction of pixels by a block unit. We calculate the difference between the maximum value and the minimum value of the histogram and consider the block that have the largest difference value as the block of the bar code region. We get the line passing by the bar code region with the selected block but detect blocks of interest to get the more accurate line. The largest difference value is used to decide the threshold value to obtain the binary image. After obtaining a binary image, we do the labeling about the binary image. Therefore, we find blocks of interest in the bar code region. We calculate the gradient and the center of the bar code with blocks of interest, and then get the line passing by the bar code and detect the bar code. As we obtain the gray level of the line passing by the bar code, we grasp the information of the bar code.

A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm (주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출)

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, "Neighbor Foreground Pixel Propagation (NFPP)" which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.

Recognition of Car License Plates Using Difference Operator and ART2 Algorithm (차 연산과 ART2 알고리즘을 이용한 차량 번호판 통합 인식)

  • Kim, Kwang-Baek;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2277-2282
    • /
    • 2009
  • In this paper, we proposed a new recognition method can be used in application systems using morphological features, difference operators and ART2 algorithm. At first, edges are extracted from an acquired car image by a camera using difference operators and the image of extracted edges is binarized by a block binarization method. In order to extract license plate area, noise areas are eliminated by applying morphological features of new and existing types of license plate to the 8-directional edge tracking algorithm in the binarized image. After the extraction of license plate area, mean binarization and mini-max binarization methods are applied to the extracted license plate area in order to eliminated noises by morphological features of individual elements in the license plate area, and then each character is extracted and combined by Labeling algorithm. The extracted and combined characters(letter and number symbols) are recognized after the learning by ART2 algorithm. In order to evaluate the extraction and recognition performances of the proposed method, 200 vehicle license plate images (100 for green type and 100 for white type) are used for experiment, and the experimental results show the proposed method is effective.

A block-based face detection algorithm for the efficient video coding of a videophone (효율적인 화상회의 동영상 압축을 위한 블록기반 얼굴 검출 방식)

  • Kim, Ki-Ju;Bang, Kyoung-Gu;Moon, Jeong-Mee;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1258-1268
    • /
    • 2004
  • We propose a new fast, algorithm which is used for detecting frontal face in the frequency domain based on human skin-color using OCT coefficient of dynamic image compression and skin color information. The region where each pixel has a value of skin-color were extracted from U and V value based on DCT coefficient obtained in the process of Image compression using skin-color map in the Y, U, V color space A morphological filter and labeling method are used to eliminate noise in the resulting image We propose the algorithm to detect fastly human face that estimate the directional feature and variance of luminance block of human skin-color Then Extraction of face was completed adaptively on both background have the object analogous to skin-color and background is simple in the proposed algorithm The performance of face detection algorithm is illustrated by some simulation results earned out on various races We confined that a success rate of 94 % was achieved from the experimental results.

A Forest Fire Detection Algorithm Using Image Information (영상정보를 이용한 산불 감지 알고리즘)

  • Seo, Min-Seok;Lee, Choong Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.159-164
    • /
    • 2019
  • Detecting wildfire using only color in image information is a very difficult issue. This paper proposes an algorithm to detect forest fire area by analyzing color and motion of the area in the video including forest fire. The proposed algorithm removes the background region using the Gaussian Mixture based background segmentation algorithm, which does not depend on the lighting conditions. In addition, the RGB channel is changed to an HSV channel to extract flame candidates based on color. The extracted flame candidates judge that it is not a flame if the area moves while labeling and tracking. If the flame candidate areas extracted in this way are in the same position for more than 2 minutes, it is regarded as flame. Experimental results using the implemented algorithm confirmed the validity.

Color Image Segmentation Using Anisotropic Diffusion and Agglomerative Hierarchical Clustering (비등방형 확산과 계층적 클러스터링을 이용한 칼라 영상분할)

  • 김대희;안충현;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.377-380
    • /
    • 2003
  • A new color image segmentation scheme is presented in this paper. The proposed algorithm consists of image simplification, region labeling and color clustering. The vector-valued diffusion process is performed in the perceptually uniform LUV color space. We present a discrete 3-D diffusion model for easy implementation. The statistical characteristics of each labeled region are employed to estimate the number of total clusters and agglomerative hierarchical clustering is performed with the estimated number of clusters. Since the proposed clustering algorithm counts each region as a unit, it does not generate oversegmentation along region boundaries.

  • PDF

Automatic Dataset Generation of Object Detection and Instance Segmentation using Mask R-CNN (Mask R-CNN을 이용한 물체인식 및 개체분할의 학습 데이터셋 자동 생성)

  • Jo, HyunJun;Kim, Dawit;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 2019
  • A robot usually adopts ANN (artificial neural network)-based object detection and instance segmentation algorithms to recognize objects but creating datasets for these algorithms requires high labeling costs because the dataset should be manually labeled. In order to lower the labeling cost, a new scheme is proposed that can automatically generate a training images and label them for specific objects. This scheme uses an instance segmentation algorithm trained to give the masks of unknown objects, so that they can be obtained in a simple environment. The RGB images of objects can be obtained by using these masks, and it is necessary to label the classes of objects through a human supervision. After obtaining object images, they are synthesized with various background images to create new images. Labeling the synthesized images is performed automatically using the masks and previously input object classes. In addition, human intervention is further reduced by using the robot arm to collect object images. The experiments show that the performance of instance segmentation trained through the proposed method is equivalent to that of the real dataset and that the time required to generate the dataset can be significantly reduced.