• Title/Summary/Keyword: kullback-Leibler distance

Search Result 24, Processing Time 0.02 seconds

Region-based Multi-level Thresholding for Color Image Segmentation (영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.

A Study on Particle Filter based on KLD-Resampling for Wireless Patient Tracking

  • Ly-Tu, Nga;Le-Tien, Thuong;Mai, Linh
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • In this paper, we consider a typical health care system via the help of Wireless Sensor Network (WSN) for wireless patient tracking. The wireless patient tracking module of this system performs localization out of samples of Received Signal Strength (RSS) variations and tracking through a Particle Filter (PF) for WSN assisted by multiple transmit-power information. We propose a modified PF, Kullback-Leibler Distance (KLD)-resampling PF, to ameliorate the effect of RSS variations by generating a sample set near the high-likelihood region for improving the wireless patient tracking. The key idea of this method is to approximate a discrete distribution with an upper bound error on the KLD for reducing both location error and the number of particles used. To determine this bound error, an optimal algorithm is proposed based on the maximum gap error between the proposal and Sampling Important Resampling (SIR) algorithms. By setting up these values, a number of simulations using the health care system's data sets which contains the real RSSI measurements to evaluate the location error in term of various power levels and density nodes for all methods. Finally, we point out the effect of different power levels vs. different density nodes for the wireless patient tracking.

Performance Improvement in the Multi-Model Based Speech Recognizer for Continuous Noisy Speech Recognition (연속 잡음 음성 인식을 위한 다 모델 기반 인식기의 성능 향상에 대한 연구)

  • Chung, Yong-Joo
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • Recently, the multi-model based speech recognizer has been used quite successfully for noisy speech recognition. For the selection of the reference HMM (hidden Markov model) which best matches the noise type and SNR (signal to noise ratio) of the input testing speech, the estimation of the SNR value using the VAD (voice activity detection) algorithm and the classification of the noise type based on the GMM (Gaussian mixture model) have been done separately in the multi-model framework. As the SNR estimation process is vulnerable to errors, we propose an efficient method which can classify simultaneously the SNR values and noise types. The KL (Kullback-Leibler) distance between the single Gaussian distributions for the noise signal during the training and testing is utilized for the classification. The recognition experiments have been done on the Aurora 2 database showing the usefulness of the model compensation method in the multi-model based speech recognizer. We could also see that further performance improvement was achievable by combining the probability density function of the MCT (multi-condition training) with that of the reference HMM compensated by the D-JA (data-driven Jacobian adaptation) in the multi-model based speech recognizer.

  • PDF

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.