• Title/Summary/Keyword: kraft pulps

Search Result 46, Processing Time 0.024 seconds

Studies on the production of Various Chemical Pulps from Bamboo (대나무를 이용한 각종 화학펄프 제조에 관한 연구)

  • 강진하;박성종
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.3
    • /
    • pp.57-64
    • /
    • 2000
  • This study was carried out to acquire basic data necessary for the use of non-wood pulp. It investigated various chemical pulping methods using bamboo to achieve higher yield lower kappa no. and then the physical properties of various pulps were tested. The results of this study were as follows. When various chemical pulps(Soda, Soda-AQ, Soda-AQ-H2O2, Soda-urea, AS, AS-AQ, Kraft) were produced with bamboo. the pulps with the higher yield and lower kappa no. were AS-AQ and Kraft. In the case of the breaking length Soda pulps(5.77∼6.46 km) showed the greatest and Soda-urea pulps(3.81∼4.522km) showed the lower value. Similarly for the burst index Soda pulps (3.28∼3.50 kPa$.$m2/g) were the best and Soda-urea pulps(2.29∼2.39 kPa$.$m2/g) were worst. On the other hand the tearing indexes of AS-AQ pulps(73.6∼89.7mN$.$m2/g) showed the tendency which was higher then those of other pulps.

  • PDF

Application of Alkaline Xylanase of Cephalosporium sp. RYM-202 in Enzymatic Treatment of Kraft Pulps (Cephalosporium sp. RYM-202가 생산하는 알카리내성 xylanase를 이용한 크라프트 펄프의 효소적 처리)

  • Kang, Myung-Kyu;Lee, Young-Ha;Kim, Byung-Hyun;Jeon, Yang
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • Enzyme-aided bleaching of softwood and hardwood kraft pulps by a xylanase preparation from an alkalophilic fungus Cephalospotium sp. RYM-202 was studied. Maximal solubilization of Pulp xylan was obtained at 5$0^{\circ}C$ in both kraft pulps. The optimum pH of the enzyme for the hydrolysis of pulp xylan was 8.0 and more than 90% of the maximal activity was detected at 9.0. The positive effects of xylanase pretreatment on bleachability of softwood and hardwood kraft pulps were observed. The kappa number of softwood and hardwood kraft pulps was decreased by 3.7 and 2.0 units, respectively. The pulp fibre integrity was not significantly affected by xylanase pretreatment when the physical properties of handsheets made from xylanase-treated pulps were compared with those of handsheets from untreated pulps. These results indicate that the alkaline xylanase of Cephalospotium sp. RYM-202 is well suitable for application in enzymatic prebleaching of softwood and hardwood kraft pulps under the alkaline conditions.

  • PDF

Impact of Lignin Determination Method on Oxygen Delignification Chemistry

  • Shin Soo-Jeong;Lai Yuan-Zong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.50-55
    • /
    • 2005
  • In previous report, we investigated the impact of hexeneuronic acid and some residual extractiveson lignin determination. These non-lignin components severely interfered lignin content determination which also affect on the oxygen delignification comparison between aspen and pine unbleached kraft pulps. Very different pattern was observed whether based on uncorrected conventional kappa number or based on corrected kappa number in oxygen delignification comparison. Lower kappa number aspen pulps showed poor response to oxygen delignification when kappa number was used as lignin determination method but better response with using the acid lignin method. Phenolic hydroxyl group in kraft pulps were also compared based on uncorrected or corrected kappa numberfor lignin content. Based on uncorrected kappa number, lower kappa number oxygen-delignified pulps had lower phenolic hydroxyl group. However, lower kappa number oxygen-delignified pulps showed much higher phenolic hydroxyl group based on the corrected lignin content. For accurate comparison for residual lignin properties from different pulps, lignin determination should be corrected from non-lignin components contribution to lignin.

Study for Optimum Use of Forest Biomass Generated from the National Forest Management Operation (Part 2) - Fitness of Mixed Wood Species as Raw Materials for Kraft Pulp - (숲가꾸기 산물의 최적용도 개발을 위한 연구 (제2보) - 산물의 혼합을 통한 크라프트 펄프화 적성 연구 -)

  • Lee, Jee-Young;Kim, Chul-Hwan;Park, Hyun-Jin;Kim, Sung-Ho;Kim, Gyung-Chul;Sheikh, M.I.;Cho, Hu-Seung;Shim, Sung-Woong;Lee, Young-Min;Ahn, Byung-Il
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study was carried out to explore optimum use of the products generated from the National Forest Management Operation (NFMO) as raw materials for kraft pulp. First of all, different wood species from NFMO were randomly mixed, and then they were used to make kraft pulp under the specified condition. All kraft pulps made from the mixed species displayed equal physical properties to those from foreign wood chips used in Moorim P&P Co. Ltd. For optical properties, most of the unbleached pulps had high brightness but the pulp made from wood species containing chestnut tree showed the lowest brightness due to its high kappa number. Finally, the products from NFMO had little negative effects on the properties of kraft pulps. This means that they could be used as complementary raw materials for kraft pulps with foreign wood chips.

Manufacture of Hwaseonji(Korean Traditional Paper) Using Various Kinds of Short-Length Fiber Pulps (각종 단섬유펄프를 이용한 화선지 제조)

  • Kang Jin-Ha;Ju Yong-Chan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.78-86
    • /
    • 2005
  • Hwaseonji(Korean traditional paper) used for writing and painting has been made from the mulberry bast-fiber and the short-length fiber pulps, wood pulps. However, besides wood pulps, other short-length fiber pulps also can be used instead of wood pulps. Hence, this research was carried out to make the various Hwaseonjis with the different properties, using the five kinds of short-length fiber pulps respectively. The short-length fiber pulps used in this research were softwood bleached kraft pulp(SwBKP) hardwood bleached kraft pulp(HwBKP), rice-straw bleached sulfite pulp(RsBSP), bamboo bleached kraft pulp(BbBKP) and recycled pulp from vellem paper(RP). And, the mixture ratios of the mulberry bast-fiber pulp and short-length fiber pulps were 100:0, 80:20, 60:40, 40:60 and 20:80. After various Hwaseonjis were made from different mixtures mentioned above with hand-made method, physical properties and chinese ink blot property of each paper were measured. The strengthes were the highest in the Hwaseonji made from the mixture of the mulberry bast-fiber pulp and SwBKP. However, chinese ink blot property and smoothness were better when RsBSP, BbBKP or RP were mixed into the mulberry bast-fiber pulp. As a result, the various kinds of Hwaseonjis which the users can choose based on their needs were made.

Application Evaluation of Physical and Strength Properties of Paperboard by Kraft Pulp Mixing Made from Agricultural Byproducts (농업부산물 크라프트펄프의 혼합에 따른 판지의 물성변화)

  • Lee, Ji-Young;Lim, Gi-Baek;Kim, Sun-Young;Park, Jong-Hye;Kim, Eun-Hea;Sung, Yong Joo;Heo, Young-Jun;Kim, Young-Hun;Kim, Youn-Ho;Lee, Se-Ran
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.43-50
    • /
    • 2014
  • The cultivation of agricultural crops results in the generation of agricultural byproducts. Researchers have reported that these materials can be useful in a variety of applications. However, over 50% of them are currently discarded because of the lack of specific technologies in industrial applications. Therefore, effective and specific applications must be developed in order to manufacture high-quality materials using discarded lignocellulosic resources. In this study, we determined the possibility of using kraft pulp from major agricultural byproducts as a raw material for the manufacture of paperboard. Rice husks, peanut husks, and garlic stems were obtained and used to prepare many kinds of kraft pulps by controlling the active alkali, sulfidity, reaction time, and liquor ratio. After the production of these kraft pulps, handsheets were manufactured by mixing them with KOCC. After preconditioning, the physical properties and strengths of the handsheets were measured according to the TAPPI test methods. The shapes, lengths, and widths of the pulp fibers varied according to the type of agricultural byproduct and the kraft pulping conditions. Rice husk and garlic stem pulps manufactured under mild pulping conditions resulted in handsheets of higher bulk than other pulps. Garlic stem pulps manufactured under mild pulping conditions were stronger than rice husk pulps and peanut husk pulps.

Kraft Pulp Properties Made of Forest Bioamss from Forest Management Operation (숲가꾸기 산물에 의한 크라프트 펄프의 적성 연구)

  • Park, Hyeon-Jin;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Sheikh, MD Mominul Islam;Yeasmin, Shabina;Gwak, Hye-Jeong;Kim, Seong-Ho;Kim, Gyeong-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.131-138
    • /
    • 2011
  • Currently, many forest residues have been generated by the National Forest Management Operation. Unfortunately, most of the forest residues are supposed to be used as raw materials for burning fuels like wood pellets. Even though the forest biomass must be effectively used for making high value-added products, they may be subject to disposable raw materials for wood pellets. Wood pellets are regarded as burning fuels with less contribution to the decrease in carbon gas emission, compared to raw materials for kraft pulps. In this study, we studied whether or not forest biomass mixed with various ages and, species could be used as raw materials for kraft pulps.

  • PDF

Improvement of Pulp Handsheet Strength Properties by Polylactic Acids

  • Hou, Q.X.;Chai, X.S.;Yang, R.;Ragauskas, A.J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.395-400
    • /
    • 2006
  • Polylactic acids polymer (PLA) was applied as an additive to improve the strength properties of handsheets prepared from three unbleached southern pine kraft pulps with different kappa number and an aspen bleached chemithermomechanical pulp (BCTMP). The results showed that PLA could greatly improve the tensile and burst strength of the pulp handsheets. Heat pressing effect was also important to enhance the strength properties. For unbleached kraft pulps, it was found that an appropriate amount of residual lignin in pulps had a positive effect on the handsheets strength improvement when adding PLA. The thickness of the handsheet did not change the PLA strengthening effect. In general, PLA effect on tear strength improvement could be neglected. However, it had a significant effect on the improvement of tear strength for the aspen BCTMP handsheets not containing sufficient amount of fines.

  • PDF

Impact of hexeneuronic acid to kappa number determination in hardwood chemical pulps (활엽수 화학 펄프내 잔류 hexeneuronic acid가 카파 값에 미치는 영향)

  • Shin, Soo-Jeong;Sung, Yong-Joo;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • Variations in hexeneuronic acid content in hardwood alkaline pulps were investigated to evaluate their contribution to kappa number. Out of diverse chemical pulps the highest hexeneuronic acid content were measured in yellow poplar kraft pulping, which was assumed to enhance ca. 7.0 of kappa number determined by acid permanganate consumption. In yellow poplar soda-anthraquinone pulping, hexeneuornic acid was contributed to increment of 5.0-6.0 kappa number. In eucalyptus alkaline pulping, hexeneuronic acid content was not significantly different from soda-anthraquinone pulping. Increment of Kappa number by hexeneuronic acid was 4.5-5.6 depending on pulping method and pulping time at target temperature.

Application of Photoacoustic Rapid Scan FTIR for the Determination of Kappa Number of Pulp

  • Dang Vinh Q.;Bhardwaj Nishi K.;Nguyen Kien L.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.167-172
    • /
    • 2006
  • High-yield Pinus radiate kraft pulps with various Kappa number were produced from flow-through laboratory pulping. The samples were prepared and scanned using a rapid scan photoacoustic Fourier transform infrared (PAS-FTIR) spectrometer. A partial-least-squares (PLS) model was established based on the spectral data collected at different mirror velocities. The model was used to predict the Kappa number of the pulps and its robustness was statistically evaluated. The outcomes indicate that the PLS model can be used to predict the Kappa number of Pinus radiata kraft pulps with a high degree of accuracy provided that the moving mirror velocity is ${\leq}\;0.5cm/s$.

  • PDF