• Title/Summary/Keyword: kospi 200

Search Result 191, Processing Time 0.026 seconds

An Empirical Study on the Volume and Return in the Korean Stock Index Futures Markets by Trader Types (투자주체별 주가지수선물시장의 거래량과 수익률에 관한 연구)

  • Lee, Sang-Jae
    • 한국산학경영학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.107-120
    • /
    • 2006
  • This thesis examines the relationship between the trading volume and price return in the korean stock Index Futures until June 2005. First, the volume of KOSPI200 futures doesn't play a primary role with the clear explanation of return model. Second, an unexpected volume shocks are negatively associated with the return in case of the KOSPI200 futures, but it is a meaningless relation in the KOSDAQ50 futures. In the case of open interest, it's difficult to find any mean in a both futures. Third, The changes in the trading volumes by foreign investors are positively associated with the return and the volatility, but individuals and domestic commercial investors are negatively associated with the return. This empirical result seems that foreign investors are initiatively trading the korean stock index futures, individuals and domestic commercial investors follow the lead made by foreign investors.

  • PDF

Stock-Index Prediction using Fuzzy System and Knowledge Information (퍼지시스템과 지식정보를 이용한 주가지수 예측)

  • Kim, Hae-Gyun;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2030-2032
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting. The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. Results show that both networks can be trained to predict the index. And the fuzzy system is performing slightly better than DPNN and MLP.

  • PDF

A Forecasting System for KOSPI 200 Option Trading using Artificial Neural Network Ensemble (인공신경망 앙상블을 이용한 옵션 투자예측 시스템)

  • 이재식;송영균;허성회
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.489-497
    • /
    • 2000
  • After IMF situation, the money market environment is changing rapidly. Therefore, many companies including financial institutions and many individual investors are concerned about forecasting the money market, and they make an effort to insure the various profit and hedge methods using derivatives like option, futures and swap. In this research, we developed a prototype of forecasting system for KOSPI 200 option, especially call option, trading using artificial neural networks(ANN), To avoid the overfitting problem and the problem involved int the choice of ANN structure and parameters, we employed the ANN ensemble approach. We conducted two types of simulation. One is conducted with the hold signals taken into account, and the other is conducted without hold signals. Even though our models show low accuracy for the sample set extracted from the data collected in the early stage of IMF situation, they perform better in terms of profit and stability than the model that uses only the theoretical price.

  • PDF

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Random Walk Test on Hedge Ratios for Stock and Futures (헤지비율의 시계열 안정성 연구)

  • Seol, Byungmoon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.2
    • /
    • pp.15-21
    • /
    • 2014
  • The long memory properties of the hedge ratio for stock and futures have not been systematically investigated by the extant literature. To investigate hedge ratio' long memory, this paper employs a data set including KOSPI200 and S&P500. Coakley, Dollery, and Kellard(2008) employ a data set including a stock index and commodities foreign exchange, and suggested the S&P500 to be a fractionally integrated process. This paper firstly estimates hedge ratios with two dynamic models, BEKK(Bollerslev, Engle, Kroner, and Kraft) and diagonal-BEKK, and tests the long memory of hedge ratios with Geweke and Porter-Hudak(1983)(henceforth GPH) and Lo's modified rescaled adjusted range test by Lo(1991). In empirical results, two hedge ratios based on KOSPI200 and S&P500 show considerably significant long memory behaviours. Thus, such results show the hedge ratios to be stationary and strongly reject the random walk hypothesis on hedge ratios, which violates the efficient market hypothesis.

  • PDF

A numerical study on option pricing based on GARCH models with normal mixture errors (정규혼합모형의 오차를 갖는 GARCH 모형을 이용한 옵션가격결정에 대한 실증연구)

  • Jeong, Seung Hwan;Lee, Tae Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.251-260
    • /
    • 2017
  • The option pricing of Black와 Scholes (1973) and Merton (1973) has been widely reported to fail to reflect the time varying volatility of financial time series in many real applications. For example, Duan (1995) proposed GARCH option pricing method through Monte Carlo simulation. However, financial time series is known to follow a fat-tailed and leptokurtic probability distribution, which is not explained by Duan (1995). In this paper, in order to overcome such defects, we proposed the option pricing method based on GARCH models with normal mixture errors. According to the analysis of KOSPI200 option price data, the option pricing based on GARCH models with normal mixture errors outperformed the option pricing based on GARCH models with normal errors in the unstable period with high volatility.

Analysis of intraday price momentum effect based on patterns using dynamic time warping (DTW를 이용한 패턴 기반 일중 price momentum 효과 분석)

  • Lee, Chunju;Ahn, Wonbin;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.819-829
    • /
    • 2017
  • The aim of this study is to analyze intraday price momentum. When price trends are formed, price momentum is the phenomenon that future prices tend to follow the trend. When the market opened and closed, a U-shaped trading volume pattern in which the trading volume was concentrated was observed. In this paper, we defined price momentum as the 10 minute trend after market opening is maintained until the end of market. The strategy is to determine buying and selling in accordance with the price change in the initial 10 minutes and liquidating at closing price. In this study, the strategy was empirically analyzed by using minute data, and it showed effectiveness, indicating the presence of an intraday price momentum. A pattern in which returns are increasing at an early stage is called a J-shaped pattern. If the J-shaped pattern occurs, we have found that the price momentum phenomenon tends to be stronger than otherwise. The DTW algorithm, which is well known in the field of pattern recognition, was used for J-shaped pattern recognition and the algorithm was effective in predicting intraday price movements. This study showed that intraday price momentum exists in the KOSPI200 futures market.

Life Cycle of Index Derivatives and Trading Behavior by Investor Types (주가지수 파생상품 Life Cycle과 투자자 유형별 거래행태)

  • Oh, Seung-Hyun;Hahn, Sang-Buhm
    • The Korean Journal of Financial Management
    • /
    • v.25 no.2
    • /
    • pp.165-190
    • /
    • 2008
  • The degree of informational asymmetry relating to the expiration of index derivatives is usually increased as an expiration day of index derivatives approaches. The increase in the degree of informational asymmetry may have some effects on trading behavior of investors. To examine what the effects look like, 'life cycle of index derivatives' in this study is defined as three adjacent periods around expiration day: pre-expiration period(a week before the expiration day), post-expiration period(a week after the expiration day), and remaining period. It is inspected whether stock investor's trading behavior is changed according to the life cycle of KOSPI200 derivatives and what the reason of the changing behavior is. We have four results. First, trading behavior of each investor group is categorized into three patterns: ㄱ-pattern, L-pattern and U-pattern. The level of trading activity is low for pre-expiration period and normal for other periods in the ㄱ-pattern. L-pattern means that the level of trading activity is high for post-expiration period and normal for other periods. In the U-pattern, the trading activity is reduced for remaining period compared to other periods. Second, individual investors have ㄱ-pattern of trading large stocks according to the life cycle of KOSPI200 index futures while they show U-pattern according to the life cycle of KOSPI200 index options. Their trading behavior is consistent with the prediction of Foster and Viswanathan(1990)'s model for strategic liquidity investors. Third, trading pattern of foreign investors in relation to life cycle of index derivatives is partially explained by the model, but trading pattern of institutional investors has nothing to do with the predictions of the model.

  • PDF

Option Pricing with Leptokurtic Feature (급첨 분포와 옵션 가격 결정)

  • Ki, Ho-Sam;Lee, Mi-Young;Choi, Byung-Wook
    • The Korean Journal of Financial Management
    • /
    • v.21 no.2
    • /
    • pp.211-233
    • /
    • 2004
  • This purpose of paper is to propose a European option pricing formula when the rate of return follows the leptokurtic distribution instead of normal. This distribution explains well the volatility smile and furthermore the option prices calculated under the leptokurtic distribution are shown to be closer to the market prices than those of Black-Scholes model. We make an estimation of the implied volatility and kurtosis to verify the fitness of the pricing formula that we propose here.

  • PDF

Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning (투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과)

  • Kim, Kyung Mock;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.