• Title/Summary/Keyword: korean female adult

Search Result 1,362, Processing Time 0.024 seconds

PROPAGATION OF THE BLUE CRAB, PORTUNUS TRITUBERCULATUS (MIERS) (꽃게 Portunus trituberculatus (MIERS)의 종묘 생산에 관한 연구)

  • PYEN Choong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.3
    • /
    • pp.187-198
    • /
    • 1970
  • The author succeeded in rearing the young blue crab from the first stage of zoe ato the true crab shape, and during this time he observed their growth and metamorphosis. The relationships between the number of eggs carried by female crabs (E) and the carapace width (C) and body weight (W) are shown as follows: E= 27.9049C-281.8155, E=0.5682 W-116.4606. There are five zoeal stages and a megalopa in the complete larval development of the blue crab. Water temperature in rearing aquaria ranged from 21.4 to $25.2^{\circ}C$. The duration of each zoeal stage was two days on the average. After the fifth moulting, the zoea becomes megalopa and 5 to 6 days later the megalopa moults and develops into the first stage of adult crab shape. The carapace width of megalopa measured about 1.70 mm and the carapace length, from the tip of the rostrum to the posterior dorsal margin of the carapace, was about 2.78 mm on the average. The carapace width and length of the first crab, 18 days after hatching, measured about 4.48 mm and 2.62 mm respectively. After two days, the first crab moulted and grew into the second crab with about 6.47 mm in carapace width and 4.66 mm in carapace length. The larval rearing in the outdoor tank shelved better results than in the indoor aquarium. The highest mortality occurred when the first stage of zoea moulted into the second stage. Percentage of crabs which survived, from the first crab to the ninth crab stages, was about $55\%$. The relationships between rearing days (D) and the carapace width (C), carapace length (L) and body weight (W) of the crab stages during 40 days of rearing are shown as follows. Carapace width, Indoor: C=1.1250D+1.7227 Outdoor C=1.3465D -0.2449 Carapace length, Indoor: L=0.6654D+1.6712 Outdoor: L=0.7893D+0.6919 Body Weight, Outdoor: $$W=1.15e^{0.12423D}$$ Indoor: $$W=6.759\times10^{-2}D^{1.2598}$$ (9-19 day old crabs) Outdoor: $$W=4.136\times10^{-2}D^{1.6024}$$ (21-40 day old crabs) During the crab stage, the following relationships between the number of moulting times and the carapace width (C), carapace length (L) and body weight (W) were found as follows: $$C=5.2e^{0.28119N}$$ $$L=3.65e^{0.26372N}$$ $$W= 0.14e^{0.7037N}$$ The relationships between the carapace length (L) and the carapace width (C) and body weight (W) of the crab stages are shown as follows: Carapace length, mm Formula 2.62-27.17 L=1.6864C-1.0387 7.47-18.53 $$W=9.367\times10^{-5}C^{3.5567}$$ 22.11-27.17 $$W=3.406\times10^{-5}C{3.8571}$$

  • PDF

Morphological Changes of Mouse Ovary by X-Ray Irradiation (방사선 조사선량에 따른 생쥐 난소의 형태학적 변화)

  • Yoon, Chul-Ho;Choi, Jong-Woon;Yoon, Surk-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.140-156
    • /
    • 2007
  • This research was performed to investigate the morphological changes of folliculus ovary according to the radiation dose. The whole body radiation of 200 cGy, 400 cGy, and 600 cGy was given to the each groups of 5 months-aged female mouse. Various staining methods used in this research are: Hematosylin-Eosin method, and immunohistochemistrical methods using BrdU, TUNEL, p53, p21, PCNA and inhibin. The minute structural changes of folliculus ovary were observed through an electron microscope with high magnification. The morphological changes of growing folliculus ovary became distinct as the dose of X-rays increased. Especially, the nuclei of granular cells showed manifest condensation and the changes of the transparent zone were distinct. As a result of histochemical reaction according to Masson's trichrome method and reticular fiber method, the changed granular cells, the deformed basilar membrane of folliculus ovary and the abnormal arrangement of the reticular fiber were observed. In the reaction of BrdU, the granular cells of normal folliculus ovary with positive reaction rapidly decreased according to the increase of the dose of X-rays. In TUNEL study, granular cells showing positive reaction in retarded folliculus ovary were expanded to growing folliculus ovary and primordial folliculus ovary according to the increase of the dose of X-rays. In case of 600 cGy of X-rays, oocyte underwent apoptosis. In p53 immunohistochemistry, p53 manifested to be stronger as the dose of X-rays increased. p53 reactivity was manifested distinctively in all cells comprising folliculus ovary following irradiation of 600 cGy. p21 was manifested in granular cells of folliculus ovary and showed very positive reaction around follicular antrum according to the increase of the dose of X-rays. In PCNA, positive reaction was manifested in growing folliculus ovary, mature folliculus ovary and primordial folliculus ovary, but the extent of the reaction decreased as the dose of the X-rays decreased. The finding that the reaction of granular cells around folliculus ovary was stronger than that near follicular membrane indicates that what was damaged first by X-ray was the cells near folliculus ovary and follicular antrum. The reactivity of $inhibin-{\alpha}$ showed difference according to the growing stage of folliculus ovary: $inhibin-{\alpha}$ showed the most strong reaction in mature folliculus ovary with follicular antrum. There was strong reaction in granular cells around follicular membrane but $inhibin-{\alpha}$ did not occur at all in theca cells comprising follicular membrane. $Inhibin-{\alpha}$ in ovary tissue exposed to 400 cGy of X-rays was manifested more strongly than in ovary tissue exposed to 600 cGy of X-rays, which was related to the phenomenon that granular cells of mature folliculus ovary underwent necrosis or apoptosis increasingly due to X-rays. In an electron microscope with high magnification, nuclei and protoplasm of granular cells in growing folliculus ovary abruptly underwent minute structural changes according to the increase of dose of X-rays. Cell residue, by-product of cell decease, neutrophil and macrophage around follicular antrum were observed. The minute structural changes in granular cells showed typical characteristics of apoptosis: the increase of electronic density due to nuclear condensation, fragmentation of nuclei and atrophy of protoplasm. Necrosis of cells was identified but it was not so remarkable. Macrophage with apoptotic bodies was scattered. Proportional to the radiation dose, we found that the generation of heterogeneous substance of normal ovary texture's follicular fluid, the emergence of dyeing characteristic in the basilar membrane of folicle, the generation of apoptosis, and the transformation of macrophages, etc. From this results, we can infer the possible radiation hazard on the ovary of cervix cancer patient with radiation therapy.