• Title/Summary/Keyword: korean Peninsula

Search Result 4,157, Processing Time 0.032 seconds

Manufacturing Techniques of Bronze Seated Bodhisattva Statue of Goseongsa Temple in Gangjin (강진 고성사 청동보살좌상의 제작기술 연구)

  • LEE Seungchan;BAE Gowoon;CHUNG Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.146-159
    • /
    • 2024
  • In this study, a study on the production technology of the Buddha statue and the production of raw material origin was conducted through scientific analysis on the Bronze seated Bodhisattva Statue of Goseongsa Temple, a treasure. As a result of microstructure analysis through a metal microscope, it was confirmed that the microstructure of the Bronze seated Bodhisattva Statue of Goseongsa Temple was a process-type dendritic structure, and the casting structure of bronze was well represented, so it was manufactured through casting. Subsequently, as a result of analyzing the alloy composition ratio through SEM-EDS, it was identified as a ternary alloy with 81.26 wt% of copper (Cu) and 16.42 wt% of tin (Sn) and 1.72 wt% of lead (Pb). The results of the analysis of lead isotope ratios using a thermal ionization mass spectrometer (TIMS) were substituted into the distribution of lead isotope ratios on the Korean Peninsula, it was shown in corresponding to Jeolla-do and Chungcheong-do regions and North and South Gyeongsang Province. This suggests that the raw materials used in their production were likely sourced from the mines around Goseong Temple in Gangjin. Despite the fact that the statue is a medium and large Buddha with a total height of 51 centimeters, 1.72 wt% of lead (Pb) was found as a result of alloy composition ratio analysis, which showed a similar composition to the lead content ratio of small bronze and gilt-bronze Buddha statues. Therefore, we compared and analyzed the results of the analysis of the composition ratio of the alloys of bronze and gilt bronze statues, which has been scientifically analyzed with a compositional age similar to that of the Bronze seated Bodhisattva Statue of Goseongsa Temple. Comparison results, Various factors, such as the size of the Buddha statue as well as its stylistic characteristics and the age of composition, may exist in determining the alloy composition ratio of the bronze and gilt bronze Buddha statues, and it was confirmed that the alloy composition ratio or casting technology was properly adjusted when the Buddha statue was created. In other words, it is judged that a more comprehensive system of Buddha statue production technology should be investigated by conducting archaeological and art history studies on stylistic characteristics and age of composition, as well as scientific analysis results such as observation of internal structure, microstructure observation, and analysis of alloy composition ratio using radiation transmission irradiation.

Occurrence and Geochemical Characteristics of the Haenam Pb-Zn Skarn Deposit (해남 연-아연 스카른광상의 산상과 지화학적 특성)

  • Im, Heonkyung;Shin, Dongbok;Heo, Seonhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.363-379
    • /
    • 2014
  • The Haenam Pb-Zn skarn deposit is located at the Hwawon peninsula in the southwestern part of the Ogcheon Metamorphic Belt. The deposit is developed along the contact between limestone of the Ogcheon group and Cretaceous quartz porphyry. Petrography of ore samples, chemical composition of skarn and ore minerals, and geochemistry of the related igneous rocks were investigated to understand the characteristics of the skarn mineralization. Skarn zonation consists of garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone, pyroxene+garnet+quartz${\pm}$calcite zone, calcite+pyroxene${\pm}$garnet zone, quartz+calcite${\pm}$pyroxene zone, and calcite${\pm}$chlorite zone in succession toward carbonate rock. Garnet commonly shows zonal texture comprised of andradite and grossular. Pyroxene varies from Mn-hedenbergite to diopside as away from the intrusive rock. Chalcopyrite occurs as major ore mineral near the intrusive rock, and sphalerite and galena tend to increase as going away. Electron probe microanalyses revealed that FeS contents of sphalerite become decreased from 5.17 mole % for garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone to 2.93 mole %, and to 0.40 mole % for calcite+pyroxene${\pm}$garnet zone, gradually. Ag and Bi contents also decreased from 0.72 wt.% and 1.62 wt.% to <0.01 wt.% and 0.11 wt.%, respectively. Thus, the Haenam deposit shows systematic variation of species and chemical compositions of ore minerals with skarn zoned texture. The related intrusive rock, quartz porphyry, expresses more differentiated characteristics than Zn-skarn deposit of Meinert(1995), and has relatively high$SiO_2$ concentration of 72.76~75.38 wt.% and shows geochemical features classified as calc-alkaline, peraluminous igneous rock and volcanic arc tectonic setting.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (4) Kimhae Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구: (4) 김해납석광상)

  • Kim, Soo Jin;Choo, Chang Oh;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.122-144
    • /
    • 1993
  • The Kimhae napseok clay deposit was studied to characterize its mineralogy and genesis. Geology of the deposit is composed of Tertiary volcanic rocks and granodiorite. Tertiary volcanic rocks consist of andesitic tuff with minor interstratified tuffaceous shale, and rhyodacitic tuff. The main ore body of 2.4 to 4 m in thickness developed parallel to the bedding of andesitic tuff bed. Its strike and dip are $N70^{\circ}E-N85^{\circ}E$ and $16^{\circ}NW-32^{\circ}NW$, respectively. Two alteration zones; the propylitic zone of albite-epidote-chlorite-quartz assemblage and advanced argillic zone of pyrophyllite-dickite-alunite-diaspore assemblage are developed. Correlation of $SiO_2$ to $Al_2O_3$ shows no relation in propylitic zone, while a negative linear relation in advanced argillic zone. Chemical variation shows that $SiO_2$, $Al_2O_3$, MgO, CaO, $Na_2O$ and $K_2O$ were leached out during hydrothermal alteration. Pyrophyllite, the most abundant mineral in advanced argillic zone, occurs as low temperature 2M polytype. It is closely associated with dickite, diaspore and alunite. The Hinckley index of dickite is 0.83 showing moderate crystallinity. Na content is increasing in the M site with the increasing content of cations in the R-site. the mole percent of Na replacing K in alunite ranges from 53.2 to 71.6. It is also found that pyrophyllite grows in the dissolution site of diaspore. Plagioclase was albitized. Lowering of pH caused mainly by sulfide and sulfate decomposition resulted in preferential leaching of Si. It is inferred that aluminum released from plagioclase in the volcanic rocks as well as from the tuffaceous shale intercalated in andesitic tuff were the main sources of aluminum required for the formation of clay deposit. pH in hydrothermal fluid decreased from propylitic zone to advanced argillic zone with increasing degree of alteration. Based on experimental data reported in the literature and mineral assemblages, the formation temperature of the deposit ranges 270 to $320^{\circ}C$.

  • PDF

Geology and U-Pb Age in the Eastern Part of Yeongdeok-gun, Gyeongsangbuk-do, Korea (경북 영덕군 동부 일원의 지질과 U-Pb 연령)

  • Kang, Hee-Cheol;Cheon, Youngbeom;Ha, Sangmin;Seo, Kyunghan;Kim, Jong-Sun;Shin, Hyeon Cho;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.153-171
    • /
    • 2018
  • This study focuses on the investigation of geologic distribution and stratigraphy in the eastern part of Yeongdeok-gun, based on Lidar imaging, detailed field survey, microscopic observations, SHRIMP and LA-MC-ICPMS U-Pb age dating, and a new geological map has been created. The stratigraphy of the study area is composed of the Paleoproterozoic metamorphic rocks consisting of banded gneisses of sedimentary origin and schists ($1841.5{\pm}9.6Ma$) of volcanic origin, Triassic Yeongdeok plutonic rocks ($249.1{\pm}2.3Ma$) and Pinkish granites ($242.4{\pm}2.4Ma$), Jurassic Changpo plutonic rocks ($193.2{\pm}1.9Ma{\sim}188.8{\pm}2.0Ma$) and Fine-grained granites ($192.9{\pm}1.7Ma$), Formations [Gyeongjeongdong Fm, Ullyeonsan Fm. (~108 Ma), Donghwachi Fm.] of the Early Cretaceous Gyeongsang Supergroup and acidic volcanic rocks and dykes erupted and intruded in the Late Cretaceous, Miocene intrusive rhyolitic tuffs ($23.1{\pm}0.2Ma{\sim}22.97{\pm}0.13Ma$) and sedimentary rocks of the Yeonghae basin, and the Quaternary sediments. The Triassic Pinkish granites, Jurassic Changpo plutonic rocks and Fine-grained granites are newly defined plutonic rocks in this study. Miocene intrusive rhyolitic tuffs bounded by the Yangsan Fault, which was first discovered in the north of Pohang city, are believed to play an important role in the understanding of the Miocene volcanic activity and the crustal deformation history on the Korean Peninsula. It is confirmed that The NNE-SSW-striking Yangsan Fault penetrating the central part of the study area and branch faults are predominant in the dextral movement and cutting all strata except the Quaternary sediments.

Acoustic images of the submarine fan system of the northern Kumano Basin obtained during the experimental dives of the Deep Sea AUV URASHIMA (심해 자율무인잠수정 우라시마의 잠항시험에서 취득된 북 구마노 분지 해저 선상지 시스템의 음향 영상)

  • Kasaya, Takafumi;Kanamatsu, Toshiya;Sawa, Takao;Kinosita, Masataka;Tukioka, Satoshi;Yamamoto, Fujio
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2011
  • Autonomous underwater vehicles (AUVs) present the important advantage of being able to approach the seafloor more closely than surface vessel surveys can. To collect bathymetric data, bottom material information, and sub-surface images, multibeam echosounder, sidescan sonar (SSS) and subbottom profiler (SBP) equipment mounted on an AUV are powerful tools. The 3000m class AUV URASHIMA was developed by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). After finishing the engineering development and examination phase of a fuel-cell system used for the vehicle's power supply system, a renovated lithium-ion battery power system was installed in URASHIMA. The AUV was redeployed from its prior engineering tasks to scientific use. Various scientific instruments were loaded on the vehicle, and experimental dives for science-oriented missions conducted from 2006. During the experimental cruise of 2007, high-resolution acoustic images were obtained by SSS and SBP on the URASHIMA around the northern Kumano Basin off Japan's Kii Peninsula. The map of backscatter intensity data revealed many debris objects, and SBP images revealed the subsurface structure around the north-eastern end of our study area. These features suggest a structure related to the formation of the latest submarine fan. However, a strong reflection layer exists below ~20 ms below the seafloor in the south-western area, which we interpret as a denudation feature, now covered with younger surface sediments. We continue to improve the vehicle's performance, and expect that many fruitful results will be obtained using URASHIMA.

Miocene Volcanic Rocks Over the Area of Chenonja-bong and Siru-bong, Jinhae (1): Petrography and Petrochemical Characteristics (진해 천자봉-시루봉 일원에 분포하는 마이오세 화산암 (1): 암석기재와 암석화학적 특징)

  • Ryoo, Sam-Hyung;Jeong, Yun-Gi;Lee, Sang-Won;Sung, Jong-Gyu;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.108-131
    • /
    • 2008
  • The Miocene andesite and basalt intruded into and/or extruded on the Cretaceous volcanic and granitic rocks over the area of Chenjabong and Sirubong in the vicinity of Jinhae, southern part of Kyongsang basin. The K-Ar ages of the younger volcanic rocks are from 16 Ma (Sirubong andesite) to 10 Ma (Cheonjabong basalt), which indicate the Miocene volcanism in the outer part of the Tertiary basin in the Korean peninsula. The volcanics are divided into Chenjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite and Cheonjabong basalt. The Cheonjabong andesite is composed of phenocrysts of clinopyroxene and plagioclase ($An_{60{\sim}64}$) and groundmass with lath-like plagioclase ($An_{76{\sim}84}$) and glass. The Cheonjabong basaltic andesite is composed of plagioclase phenocryst ($An_{60{\sim}64}$) with plagioclase lath ($An_{65}$) and glass in groundmass. The Sirubong andesite is only consisted of plagiocalse lath ($An_{64{\sim}68}$) and glass with absence of phonocryst. The Cheonjabong basalt shows typical porphyritic texture with phenocrysts of olivine ($Fo_{69-84}$) and clinopyroxene. The groundmass of the Cheonjabong basalt is composed of microphenocrysts of olivine, clinopyroxene and plagioclase ($An_{66{\sim}71}$) and plagioclase laths ($An_{57{\sim}65}$) showing pillotaxitic and intergranular texture. The Cheonjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite are belong to calc-alkialine but the Cheonjabong basalt is alkaline basalt. By tectonic discrimination diagrams the parental magmas of the volcanic rocks have occurred boundary.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF

Rice Cultivation and Demographi Development in Korea : 1429-1918 (조선시대(朝鮮時代) 도작농업(稻作農業)의 발전(發展)과 인구증가(人口增加))

  • Lee, Ho Chol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.201-219
    • /
    • 1989
  • Rice culture in Korea has a long history ranging over two thousand years. In the agriculture economy of pre-mordern Korea, however, its importantce was not as great as generally assumed. In fact, rice culture reached full development only after the 1920s when the Japanese colonial government carried out its drive to increase rice production in the Korea peninsula. It was not until the mid-1930s that rice became the staple in Korean diet. This can be attributed to two factors : (1) a mountainous topography that provides little irrigated fields and (2) a climate characterized by droughts in spring and heavy precipitation in summer. The present paper attempts to answer some of these questions. Specifically it will focus on these : Did the development of rice culture actually result in population growth? What are the salient features of agricultural develdpment and population grow in traditional Korea? Does the case of Korea conform the prevailing generalization about the agriculture in East Asia? I have discussed the development of rice culture and population growth in the Chos$\breve{o}$n dynasty, focusing on the relation between the rapid spread of transplanting and the rapid growth of population from the seventeenth to the nineteenth century. Here are my conclusions. (1) The spread of transplanting and other technological innovationsc contributed to the rapid growth of population in this period. However, we should also note that the impact of rice culture on population growth was rather limited, for rice culture was not the mainstay of agricultural economy in pre-modern Korea. Indeed we should consider the influence of dry field cropsn population growth. Nevertheless, it is obvious that the proliferation of rice culture was a factor crucial to population growth and regional concentration. (2) How should we characterize the spread of rice culture in the whole period? Evidently rice culture spread from less then 20% of cultivated fields in the fifteenth century to about 36% of them in the early twentieth century. Although rice as a single crop outweighed other crops, rice culture was more then counter-balanced by dry field crops as a whole, due to Korea's unique climate and geography. Thus what we have here in not a typical case of competition between rice culture and day field culture. Besides, the spread of rice culture in the seventeenth and eighteenth centuries accomplished by technological innovations that overcame severe springtime drought, rather than extensive irrigation. Althougt irrigarion facilities did proliferate to some extent, this was achieved by local landlords and peasants rather than the state. This fact contradicts the classical thesis that the productivity of rice culture increased through the state management of irrigation and that this in turn determined the type of society. (3) We should further study other aspects of the transition from the stable population and production struture in the fifteenth and sixteenth centuries to the rapid population growth and excessive density of population thereafter. We should note that there were continuing efforts to reclaim the land in order to solve the severe shortage of land. Changes also took place in the agricultural production relations. The increase in land producrivity developed tenancy based on rent in kind, and this in turn increased the independence of tenants from their landlords. There were changes in family relations-such as the shift to primogeniture as an effort to prevent progressive division of property among multiplying offspring. The rapid population growth also produced a great mass of propertyless farm laborers. These changes had much to do with the disintegration of traditional social institutions and political structure toward the end of the Chos$\breve{o}$n dynasty.

  • PDF

The Preliminary Analyses on Damage Types of Stone Hertage induced by Natural Hazard, Korea (석조문화재의 자연재해 피해양상 예비분석)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Kim, Jin-Kwan;Lee, Jin-Young;Kim, Min-Seok;Yi, Sang-Heon;Kim, Jeong-Chan;Nahm, Wook-Hyun;Yang, Yun-Sik
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • The severe damage of cultural heritages induced by natural hazards like heavy rain has been dramatically increased since 1990. The number of the repair works of stone heritage of 2005 was six times as many as those of 1986 year. Especially the ratio of the repair works of Gyeongsang Province and Jeolla Province stood 63% of those of all over the country. Since 1990, the typhoons usually struck the southern part of Korea and went northward. The heavy damage of stone heritages in two provinces was caused by them. We made a preliminary survey the stone heritages that exposed to the natural hazards on the basis of repair works of them and a field survey. The analysis results indicate that the natural hazards such as landslide and soil disaster of the stone heritages related to a sloping surface stood 58% of all kind of natural hazards. The reasons are caused by the 59 % of all the stone heritages distributed in a sloping surface resulted in natural hazards like landslide and soil disaster. The bases of stone heritages can be easily eroded by the surface water with high energy induced by heavy rainfall. Most of the stone heritages like Maebul were engraved on a natural rock wall(outcrop). But some of them engraved on rolling stones are very vulnerable in a change of a base condition caused by erosion and ground subsidence and they can be tilted or fell down. The distribution of the stone heritages vulnerable in natural hazard is related to that of the rainfall distribution compounded five typhoons after 1990. Most of them are included in level two on the rainfall distribution map except those of Taean peninsula and some of Gyeonggi Province. They seem to be rather related to the rainfall distribution of the Typhoon Olga.

  • PDF

[ $^{40}Ar/^{39}Ar$ ] Ages of the Tertiary Dike Swarm and Volcanic Rocks, SE Korea (한반도 남동부 제3기 암맥군과 화신암류의 $^{40}Ar/^{39}Ar$ 연대)

  • Kim Jong-Sun;Son Moon;Kim Jin-Seop;Kim Jeongmin
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.93-107
    • /
    • 2005
  • We determined $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarms and volcanic rocks distributed in the SE Korea where the most prevalent crustal-deformation and volcanism occurred during the period. In previous study, it was disclosed that the mafic dike swarms on both sides (east and west) of the Yeonil Tectonic Line (YTL) were originated from a same magma although they are consistently aligned with different intrusion directions of NS and NE, respectively. Ages of the mafic dike swarms of this study are $47.3\pm0.8Ma$ and $48.0\pm1.3Ma$, respectively and confirm such conclusion. These facts clarify that the YTL acted as a westernmost limit of the crustal deformation, especially clockwise crust-rotation, during the Miocene. Frequent occurrence of basic dikes indicate strongly that the southeastern part of the Korean Peninsula was under E-W extensional stress field at about 48 Ma, intimately related to the India-Asia collision and subsequent sudden change of the Pacific Plate motion. The ages of the uncommonly appearing intermediate and felsic dikes were determined as $55.9\pm1.5Ma$ and $53.0\pm1.0Ma$, respectively. Ages of the andesitic lava of the Hyodongri Volcanics, the dacitic lava of the Yongdongri Tuff, and dacitic rocks intruding and covering the Churyeong Breccia were determined as $24.0\pm0.5Ma,\;21.6\pm0.4Ma$, $21.8\pm0.1Ma,\;and\;22.0\pm0.5Ma$ respectively. The ages from the volcanics agrees well with the stratigraphy established by the latest field survey, which confirms that the $andesitic\~dacitic$ volcanism was followed by the basaltic volcanism during the Early Miocene.