• Title/Summary/Keyword: knowledge networks

Search Result 750, Processing Time 0.028 seconds

A study on the impacts of informal networks on knowledge diffusion in knowledge management

  • Choi, Ha-Nool;Yang, Keun-Woo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.329-341
    • /
    • 2008
  • Knowledge management has garnered attention due to its role of maintaining competitive advantage. Creating and sharing knowledge is an essential part of managing knowledge. However, the best knowledge is underutilized because employees tend to seek knowledge through their informal networks, not reach out to other sources for obtaining the best knowledge. Prior studies on informal networks pointed out a negative influence of heavy reliance on learning through informal networks but they paid little attention to a structure of informal networks and its impacts on diffusion of knowledge. The aim of our study is to show impacts of informal network on knowledge management by employing a network structure and investigating diffusion of knowledge within it. Our study found out that performance of learning becomes lower in a highly clustered network. Creating random links such as serendipitous learning can improve performance of knowledge management. When employees rely on a knowledge management system, creating random links is not necessary. Costs of adopting knowledge affect performance of knowledge management.

  • PDF

Influences of intra- and inter-team networks on knowledge brokerage behavior (팀 내·외부 관계망이 지식 중개자 활동에 미치는 영향)

  • Kang, Minhyung;Kim, Byoungsoo
    • Knowledge Management Research
    • /
    • v.19 no.4
    • /
    • pp.19-37
    • /
    • 2018
  • Knowledge transfer among employees integrates individual knowledge scattered within a firm, thus increases organizational effectiveness. In particular, the role of knowledge broker, which enables knowledge sharing across multiple teams or subunits, is critical for the success of knowledge management. This study classified the types of knowledge broker that facilitates knowledge flows among team, and examined the influences of various intra- and inter-team social networks. Survey responses from 128 employees of four R&D teams were gathered and analyzed using partial least square structural equation modeling. The results of analysis showed that all types of inter-team networks(i.e., emotional closeness network, frequency of interaction network, and perceived expertise network) had significant influences on related knowledge brokerage behaviors. In case of intra-team networks, only the emotional closeness network showed significant influence. These results proved the necessity of managing various types of intra- and inter-team networks to encourage knowledge brokerage behaviors within a firm.

Knoledge Base Incorporated with Neural Networks

  • G.Y. Lim;Lee, K.Y..;E. H. Cho;Baek, D. S;Moon, S.R..;Kim, H. Y .
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.410-412
    • /
    • 1998
  • Subsymbolic Knowledge processing is said to be changed states of networks constructed from small elements. subsymbolic systems also make it possible to use connectionist models for knowledge processing. Connectionist realization such modulus are modulus linked together for solving a given problem. We study using neural networks as distinct actions. The output vectors produced by the neural networks are consider as a new facts. These new facts are then processed to activate another networks or used in the current production rule, The production rule is applying knowledge stored in the knowledge base to make inference. After neural networks knowledge base is constructed and trained. We present a running sample of incorporating neural network knowledge base. We implement using rochester connectionist simulator. We suggest that incorporating neural network knowledge base. Therefore incorporated neural network knowledge base ensures a cleaner solution which results in better perfor s.

  • PDF

An empirical analysis based on organizational members' perceptions about the effects of antecedents to the external knowledge network on product and service innovations : on the basis of the open innovation perspective (조직 구성원들이 인식하는 자사의 외부 지식 네트워크 구축의 선행요인들이 제품 및 서비스 혁신에 미치는 영향에 관한 실증분석 : 개방형 혁신의 관점을 기반으로)

  • Hau, Yong Sauk;Kang, Minhyung
    • Knowledge Management Research
    • /
    • v.14 no.3
    • /
    • pp.87-100
    • /
    • 2013
  • As the external knowledge networks of firms have become more and more important to their product and service innovations, many global leading companies such as P & G, IBM, and Samsung Electronics have formulated and implemented their open innovation strategy. This study attempts to empirically analyze the effects of CEOs' supports for external knowledge networks, external knowledge network-oriented cultures and inter-organizational knowledge management systems as the major antecedents to external knowledge networks by using the data based on organizational members' perceptions about them. Based on 847 samples collected from employees in three companies in the medical, the construction and the IT service industries, this study performed a structural equation modeling (SEM) analysis about the effects of the antecedents to the external knowledge networks on product and service innovations through Partial Least Squares (PLS). The empirical findings of this study show that CEOs' supports for external knowledge network positively influence product and service innovations, partially mediated by external knowledge network-oriented cultures and inter-organizational knowledge management systems. And they also show that external knowledge network-oriented cultures and inter-organizational knowledge management systems have a positive effect on product and service innovations, respectively, partially mediated by external knowledge networks. With these new findings, academic and practical implications are discussed.

  • PDF

Using Practice Context Models to Knowledge Management in Proof-of-Concept Activities: A Contribution of Knowledge Networks and Percolation Theory

  • Neto, Antonio Jose Rodrigues;Borges, Maria Manuel;Roque, Licinio
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.1-23
    • /
    • 2021
  • This study introduces novel research using Practice Context Models supported by Knowledge Networks and Percolation Theory with the aim to contribute to knowledge management in Proof-of-Concept (PoC) activities. The authors envision this proposal as a potential instrument to identify network structures based on a percolation (propagation) threshold and to analyze the importance of nodes (e.g., practitioners, practices, competencies, movements, and scenarios) during the percolation of knowledge in PoC activities. After thirty months immersed in the natural PoC habitat, acting as observers and practitioners, and supported by an ethnographic exercise and a designer-research mindset, the authors identified the production of meaning in PoC activities occurring in a hermeneutic circle characterized by the presence of several knowledge networks; thus, discovering the 'natural knowledge' in PoC as a spectrum of cognitive development spread throughout its network, as each node could produce and disseminate certain knowledge that flows and influences other nodes. Therefore, this research presents the use of Practice Context Models 'connected' to Knowledge Networks and Percolation Theory as a potential and feasible proposal to be built using the attribution of values (weights) to the nodes (e.g., practitioners, practices, competencies, movements, scenarios, and also knowledge) in the context of PoC with the aim to allow the players (e.g., PoC practitioners) to have more flexibility in building alliances with other players (new nodes); that is, focusing on those nodes with higher value (focus on quality) in collaboration networks, i.e., alliances (connections) with the aim to contribute to knowledge management in the context of PoC.

Community-based Knowledge Networks: an Australian case study (커뮤니티 기반 지식 네트워크: 호주 사례 연구)

  • Bendle, Lawrence J.
    • Knowledge Management Research
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2011
  • This paper reports on a structural view of a knowledge network comprised of clubs and organisationsexpressly concerned with cultural activities in a regional Australian city. Social network analysis showed an uneven distribution of power, influence, and prominence in the network. The network structure consisted of two modules of vertices clustered around particular categories of creative arts and these modules were linked most frequently by several organisations acting as communication hubs and boundary spanners. The implications of the findings include 'network weaving' for improving the network structure and developing a systemic approach for exploring the structures of social action that form community-based knowledge networks.

  • PDF

Rule Extraction from Neural Networks : Enhancing the Explanation Capability

  • Park, Sang-Chan;Lam, Monica-S.;Gupta, Amit
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.57-71
    • /
    • 1995
  • This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.

  • PDF

Automatic Expansion of ConceptNet by Using Neural Tensor Networks (신경 텐서망을 이용한 컨셉넷 자동 확장)

  • Choi, Yong Seok;Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.549-554
    • /
    • 2016
  • ConceptNet is a common sense knowledge base which is formed in a semantic graph whose nodes represent concepts and edges show relationships between concepts. As it is difficult to make knowledge base integrity, a knowledge base often suffers from incompleteness problem. Therefore the quality of reasoning performed over such knowledge bases is sometimes unreliable. This work presents neural tensor networks which can alleviate the problem of knowledge bases incompleteness by reasoning new assertions and adding them into ConceptNet. The neural tensor networks are trained with a collection of assertions extracted from ConceptNet. The input of the networks is two concepts, and the output is the confidence score, telling how possible the connection between two concepts is under a specified relationship. The neural tensor networks can expand the usefulness of ConceptNet by increasing the degree of nodes. The accuracy of the neural tensor networks is 87.7% on testing data set. Also the neural tensor networks can predict a new assertion which does not exist in ConceptNet with an accuracy 85.01%.

A Study on the Knowledge-Sharing Networks in Clusters to Enhance the Competitiveness of Industrial Parks (산업단지의 경쟁력 제고를 위한 산업집적지의 지식공유 네트워크에 관한 연구)

  • Jeong, Jongsik
    • Knowledge Management Research
    • /
    • v.2 no.1
    • /
    • pp.133-144
    • /
    • 2001
  • Clusters mean geographic concentrations of interconnected companies and institutions in a particular field. Geographic, cultural, and institutional proximity provides companies with special access, closer relationships, better information, powerful incentives, and other advantages that are difficult to tap from a distance. And clusters are the knowledge-sharing networks which are composed of co-existence of related industries and supporting industries, sophisticated demand, sponsor of various exhibitions and events, liaison of peripheries and clusters, liaison of clusters and clusters, and governments' willingness for promoting clusters' development.

  • PDF

Integrated Knowledge Bases of Semantic Networks for Automatic Translation of Ambiguous Words (단어의 자동번역을 위한 의미 네트워크의 통합 지식베이스)

  • Yoo-Jin Moon;Young-Ho Hwang
    • Journal of Information Technology Applications and Management
    • /
    • v.9 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • Automatic language translation has greatly advanced due to the increased user needs and Information retrieval in WWW. This paper utilizes the integrated knowledge bases of noun and verb networks for automatic translation of ambiguous words in the Korean sentences, through the selectional restriction relation in the sentences. And this paper presents the method to verify validity of Korean noun semantic networks that are used for the construction of the selectional restriction relation by applying the networks to the syntactic and semantic properties Integration of Korean Noun Networks into the SENKOV system will provide the accurate and efficient knowledge bases for the semantic analysis of Korean NLP.

  • PDF