• Title/Summary/Keyword: knowledge generation and management

검색결과 187건 처리시간 0.024초

법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론 (Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System)

  • 김지현;이종서;이명진;김우주;홍준석
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.137-152
    • /
    • 2012
  • 인터넷 환경에서 월드 와이드 웹이 등장한 이후 웹을 통해 수많은 웹 페이지들이 생산됨에 따라 사용자가 원하는 정보를 검색하기 위한 다양한 형태의 검색 서비스가 여러 분야에서 개발되어 활용되고 있다. 특히 법령 검색은 사용자가 현재 자신이 처한 상황에 필요한 법령을 검색하여 법령에 대한 지식을 얻기 위한 창구로써 국민의 편의를 제공하기 위해 반드시 필요한 서비스 중 하나이다. 이에 법제처는 2009년부터 국민 누구나 편리하게 법령에 관련된 정보를 검색할 수 있도록 국가의 법령뿐만 아니라 행정규칙이나 판례 등 모든 법령정보를 검색할 수 있는 검색 서비스를 제공하고 있다. 하지만 현재까지의 검색엔진 기술은 기본적으로 사용자가 입력한 질의어를 문서에 포함하고 있는지의 여부에 따라 해당 문서를 검색 결과로 제시한다. 법령 검색 서비스 또한 해당 법령에 등장하는 키워드를 활용하여 사용자에게 검색 결과를 제공해주고 있다. 따라서 법제처의 이런 노력에도 불구하고 법령이 전문가의 시각에서 작성되었기 때문에 법에 익숙하지 않은 일반 사용자는 자신이 필요한 법령을 검색하기 어려운 한계점을 가지고 있다. 이는 일반적으로 법령에 사용되는 용어들과 일반 사용자가 실생활에 사용하는 단어가 서로 상이하기 때문에 단순히 키워드의 단순 매칭 형태의 검색엔진에서는 사용자들이 주로 사용하는 생활용어를 이용해서 원하는 법령을 검색할 수 없다. 본 연구에서는 법률용어에 관한 사전지식이 부족한 일반 사용자가 일상에서 주로 사용되는 생활용어를 이용하여 키워드 기반의 법령정보 검색 사이트에서 정확한 법령정보 검색이 가능하도록 생활용어와 법률용어 간의 대응관계를 탐색하고 이를 이용하여 법령을 검색할 수 있는 방법론을 제안하고자 한다. 우선 생활용어와 법률용어 간의 대응관계를 발견하기 위해 본 논문에서는 사용자들의 집단지성을 활용한다. 이를 위해 사용자들이 블로그의 분류 및 관리, 검색에 활용하기 위해 작성한 태그 정보를 이용하여 질의어인 생활용어와 관련된 태그들을 수집한다. 수집된 태그들은 K-means 군집분석 기법을 통해 태그들을 클러스터링하고, 생활용어와 가장 가까운 법률용어를 찾기 위한 평가 방법을 통해 생활용어에 대응될 수 있는 적절한 법률용어를 선택한다. 선택된 법률용어는 해당 생활용어와 명시적인 관계성이 부여되며, 이러한 생활용어와 법률용어와의 관계는 온톨로지 기반의 시소러스를 기술하기 위한 SKOS를 이용하여 표현된다. 이렇게 구축된 온톨로지는 사용자가 생활용어를 이용하여 검색을 수행할 경우 생활용어에 대응되는 적절한 법률용어를 찾아 법령 검색을 수행하고 그 결과를 사용자에게 제시한다. 본 논문에서 제시하고자 하는 방법론을 통해 법령 및 법률용어에 관련된 사전 지식이 없는 일반 사용자도 편리하고 효율적으로 법령을 검색할 수 있는 서비스를 제공할 것으로 기대한다.

멘토링기능이 청년창업역량에 미치는 영향에 관한 실증연구 : 창업예비기간.창업희망기간의 조절효과를 중심으로 (The Empirical Study on the Relationship Between Mentoring Functions and Young generation Start-up Competence : Focusing on Moderating Effect of Start-up Preliminary period & Start-up Aim Period)

  • 오재우;양동우
    • 벤처창업연구
    • /
    • 제9권5호
    • /
    • pp.115-127
    • /
    • 2014
  • 국내의 창업 정책은 글로벌 경제위기와 청년층 실업이 심각하게 증가하는 문제를 해결하기 위한 하나의 방안으로 대학생 또는 청년창업을 다양하게 지원하고 있다. 하지만 대부분의 청년창업은 기업경영에 관한 사전지식과 경험 부족 상태에서 이루어지기 때문에 성공보다는 실패사례가 많아 청년 예비창업자들은 이러한 실패에 대한 두려움 등으로 창업을 주저하거나 포기하는 경우가 많다. 현재 예비창업자들을 위해 여러 가지 창업교육들이 진행되고 있으며, 예비창업자들을 위한 창업 멘토링 프로그램도 마련되어 있다. 특히, 창업 멘토링 프로그램은 새로운 것에 대한 도전과 그로 인해 겪을 수 있는 실패에 대한 두려움과 같이 창업자들의 두려움과 불안감을 완화하는 데 그 중요성이 인정되어 그 비중과 프로그램의 내용이 강화되고 있다. 이에 본 연구에서는 창업 멘토링기능이 청년창업자의 창업역랑 향상에 미치는 영향을 규명하고, 멘토링기능과 창업역랑 사이에 창업예비기간과 창업희망기간의 조절효과를 검증하여 멘토링기능이 창업을 원하는 우수한 기술 또는 아이디어를 가진 청년창업자에게 미치는 영향을 알아보고자 한다. 본 연구의 회귀 분석 결과 멘토링기능은 창업역량인 기술적 역량과 창의적 역량에 유의적인 정(+)의 영향을 미치며, 창업예비기간과 창업희망기간의 조절효과는 멘토링 기능과 기술적 역량 사이에는 유의하지 않지만, 창의적 역량 사이에는 유의하게 영향을 미쳐지는 것을 알 수 있었다. 다만, 멘토링 기능별로 창업역량에 미치는 조절효과를 살펴본 결과 창업예비기간만이 창업역량에 유의적인 영향을 미치고, 창업 희망기간은 창업역량에 조절효과를 미치지 않는 다는 것을 알 수 있었다. 따라서 창업 교육 중 멘토링 관련 프로그램은 창업자의 창의성역량을 강화하는 프로그램에 중점적으로 활용되어야하며, 멘토링 프로그램 참여 시 예비창업자들의 창업 준비정도를 반영하여 창업자 눈높이에 적합한 맞춤형 멘토링기능을 제공하도록 하여야 한다.

  • PDF

생활방식품패확장적품패자산건모(生活方式品牌扩张的品牌资产建模): 침대Y세대화영인조소비자적전략로경(针对Y世代和婴儿潮消费者的战略路径) (Modeling Brand Equity for Lifestyle Brand Extensions: A Strategic Approach into Generation Y vs. Baby Boomer)

  • Kim, Eun-Young;Brandon, Lynn
    • 마케팅과학연구
    • /
    • 제20권1호
    • /
    • pp.35-48
    • /
    • 2010
  • 今天, 受到成熟零售市场挑战的时装市场需要新的 "品牌发展" 典范来提高他们的竞争优势. 时装市场的一个重要议题是为满足消费者由于生活方式的变化而产生的特别需求所进行的生活方式品牌扩张. 时装品牌扩张到生活方式产品类别, Y世代和婴儿潮可以说是新兴的 "前景"(婴儿潮的消费者正在改变他们的生活方式. Y世代正经历着他们生命阶段的变化). 他们有购买新产品的需求. 因此, 服装公司为品牌扩张注重消费群从而在新的产品类别中建立和管理他们的品牌资产是乐观的. 本文的研究目的是(a)评估母品牌和子品牌的品牌资产. (b)鉴定消费者对品牌扩张的感知营销因素. (c)评估两个选择的群体(Y世代和婴儿潮)的营销因素和扩张到生活方式的产品类别(包括家居时尚产品)品牌的品牌资产之间因果关系的结构方程模型. 关于理论框架, 本文关注传统的营销4P组合来鉴定哪个营销因素在品牌扩张资产方面更重要. 比较营销可以建立 "品牌扩张资产", 从而成功的进入新类别. 借鉴相关的文献, 通过关注选择的消费者(Y世代, 婴儿潮), 本研究发展的研究假设结合了品牌资产因子和营销因素. 在品牌扩张至生活方式产品的背景下, 品牌资产的构念包括品牌认知/联合, 品牌感知(例如感知质量, 情感价值)和从CBBE因子(Keller, 2001)中而来的品牌共鸣. 据推测, 通过品牌扩张至生活方式产品, 市场营销要素在品牌认知/联合, 品牌感知方面创建品牌扩张资产, 进而影响品牌的共鸣. 为了收集数据, 样本由韩国Y世代的女性消费者和在婴儿潮中出生的消费者. 这些在婴儿潮中出生的消费者由于生活周期的改变而对生活方式产品有较高的需求. 在韩国Y世代(n=326)和婴儿潮(n=325)的女性消费者中共有651份有用的问卷被使用. 我们用LISREL8.8测试了使用相关矩阵的结构和测量模型. 结果显示品牌扩张的感知营销因素包括三个因子: 价格/店铺形象, 产品和广告. 在Y世代的模型中, 价格/店铺形象对品牌资产因素有积极的影响(例如品牌认知/联合, 感知质量). 同时, 在品牌扩张中产品对情感价值有积极的影响. 品牌认知/联合有可能提高感知质量和情感价值, 从而对扩张至生活方式产积极的品牌产生品牌共鸣. 在婴儿潮消费者模型中, 价格/店铺形象对感知质量有积极的影响, 感知质量可以创造品牌扩张的品牌共鸣. 产品对质量感知和情感价值有正的影响, 这些都会消费者产生对扩张至生活方式产品的品牌的品牌共鸣. 但是, 在这两个群体中广告和品牌资产都是负相关. 本研究为时装营销者提供了发展成功的品牌扩张战略以及可持续的竞争优势的见解. 本研究补充和扩展了先前的有关通过营销努力的因素促使品牌扩张成功的研究. 研究结果支持为进入新的产品类别, 时装品牌扩张(Aaker and Keller, 1990; Tauber, 1998; Shine et al., 2007; Pitta and Katsanis, 1995)和营销行动的增效作用. 因此, 我们推荐营销者同时针对Y世代和婴儿潮一代通过标准化的营销推广进入新产品类别(例如家具)可以降低营销成本. 时装营销者可以(a)提供高价的产品线. (b)在韩国通过零售渠道(例如专门百货商店)强调高档特征的商店形象定位. (c)结合服装与生活方式产品包括新颖的款式和设计师的限量版. 对品牌资产,成功品牌延伸的关键是消费者的品牌认知度和品牌联合,确保新产品类别的品牌特征. 对于营销者来说, 在进入新产品类别的时候知道什么有助于更具体的联合是必要的. 对时装品牌而言, 品牌扩张的第二个关键是进入 "奢侈" 生活方式新产品类别的途径. 更高的价格或店铺形象都对质量感知有影响. 而质量感知可以引起品牌共鸣. 更重要的是, 本研究提高了对品牌扩张的理论理解并对营销者提出了在制定针对Y世代和婴儿潮一代消费者的行销项目时的方向.

산업장 교대근무 근로자의 건강증진행위 예측요인 (Predictive Factors of Health promotion behaviors of Industrial Shift Workers)

  • 김영미
    • 한국직업건강간호학회지
    • /
    • 제11권1호
    • /
    • pp.13-30
    • /
    • 2002
  • Industrial shift workers feels suffer mental stresses which are caused by unfamiliar day sleep, noisy environment, sleeping disorder by bright light, unusual contacts with family, difficulty in meeting with friends or having formal social meetings and other social limitations such as the use of transportation. Such stresses influence health of the workers negatively. Thus the health promotion policy for shift workers should be made considering the workers' ways of living and shift work specially. This study attempted to provide basic information for development of the health promotion program for industrial shift workers by examining predictive factors influencing health promotion behaviors of those workers. In designing the study, three power generation plants located in Pusan and south Kyungsang province were randomly selected and therefrom 280 workers at central control, boiler and turbine rooms and environmental chemistry parts whose processes require shift works were sampled as subjects of the study. Data were collected two times from September 17 to October 8, 1999 using questionnaires with helps of safety and health managers of the plants. The questionnaires were distributed through mails or direct visits. Means for the study included the measurement tool of health promotion behavior provided by Park(1995), the tool of self-efficacy measurement by Suh(1995), the tool of internal locus of control measurement by Oh(1987), the measurement tool of perceived health state by Park(1995) and the tool of social support measurement by Paek(1995). The collected data were analyzed using SPSS program. Controlling factors of the subjects were evaluated in terms of frequency and percentage ratio Perceived factors and health promotion behaviors of the subjects were done so in terms of mean and standard deviation, and average mark and standard deviation, respectively. Relations between controlling and perceived factors were analyzed using t-test and ANOVA and those between perceived factors and the performance of health promotion behaviors, using Pearson's Correlation Coefficient. The performance of health promotion behaviors was tested using t-test, ANOVA and post multi-comparison (Scheffe test). Predictive factors of health promotion behavior were examined through the Stepwise Multiple Regression Analysis. Results of the study are summarized as follows. 1. The performance of health promotion behaviors by the subjects was evaluated as having the value of mean, $161.27{\pm}26.73$ points(min.:60, max.:240) and average mark, $2.68{\pm}0.44$ points(min.:1, max.:4). When the performance was analyzed according to related aspects, it showed the highest level in harmonious relation with average mark, $3.15{\pm}.56$ points, followed by hygienic life($3.03{\pm}.55$), self-realization ($2.84{\pm}.55$), emotional support($2.73{\pm}.61$), regular meals($2.71{\pm}.76$), self-control($2.62{\pm}.63$), health diet($2.62{\pm}.56$), rest and sleep($2.60{\pm}.59$), exercise and activity($2.53{\pm}.57$), diet control($2.52{\pm}.56$) and special health management($2.06{\pm}.65$). 2. In relations between perceived factors of the subjects(self-efficacy, internal locus of control, perceived health state) and the performance of health promotion behaviors, the performance was found having significantly pure relations with self-efficacy (r=.524, P=.000), internal locus of control (r=.225, P=.000) and perceived health state(r=.244, P=.000). The higher each evaluated point of the three factors was, the higher the performance was in level. 3. When relations between the controlling factors(demography-based social, health-related, job-related and human relations characteristics) and the performance of health promotion behaviors were analyzed, the performance showed significant differences according to marital status (t=2.09, P= .03), religion(F=3.93, P= .00) and participation in religious activities (F=8.10, P= .00) out of demography-based characteristics, medical examination results (F=7.20, P= .00) and methods of the collection of health knowledge and information(F=3.41, P= .01) and methods of desired health education(F=3.41, P= .01) out of health-related characteristics, detrimental factors perception(F=4.49, P= .01) and job satisfaction(F=8.41, P= .00) out of job-related characteristics and social support(F=14.69, P= .00) out of human relations characteristics. 4. The factor which is a variable predicting best the performance of health promotion behaviors by the subjects was the self-efficacy accounting for 27.4% of the prediction, followed by participation in religious activities, social support, job satisfaction, received health state and internal locus of control in order all of which totally account for 41.0%. In conclusion, the predictive factor which most influence the performance of health promotion behaviors by shift workers was self-efficacy. To promote the sense, therefore, it is necessary to develop the nursing intervention program considering predictive factors as variables identified in this study. Further industrial nurses should play their roles actively to help shift workers increase their capability of self-management of health.

  • PDF

50대 중산층 남성들의 사진 활동 이야기 - 문화자본론의 관점에서 - (A Study on the Experience of Photo graphic Activity of the Middle-Class Men in Their 50s: Based on the Perspective of Cultural Capital Theory)

  • 이예지
    • 예술경영연구
    • /
    • 제58호
    • /
    • pp.5-47
    • /
    • 2021
  • 본 연구는 문화예술교육을 시작으로 전개된 50대 중산층 남성 다섯 명의 사진 활동에 관한 이야기이다. 그리고 이들의 경험을 부르디외(Bourdieu, P.)의 문화자본론을 비판적으로 수용해야 한다는 공유된 문제의식을 기반으로 코스쿠너-발리와 톰슨(Coskuner-Bali & Thompson, 2013)이 제안한 '부차적 문화자본(subordinate cultural capital)' 개념과 백룬드와 쿠언쯜(Backlund & Kuentzel, 2013)의 '여가자본(leisure capital)'을 경유해 연구 참여자들의 사진 활동을 보다 구체적으로 이해하고자 하였다. 연구 참여자들은 경제 자본이 곧 '개인의 능력'이라고 인정받는 사회적 분위기 속에서 일상을 보내왔지만 어느새 문화예술에 대한 소양과 취향이 '개인의 정체성'이라는 가치관을 마주하게 된다. 이에 따른 주관적 결핍감과 함께 '노년 직전의 시기'라는 생애 주기적 특성은 심리적 동기를 실천에 옮긴 데에 영향을 미친 것으로 드러났다. 나아가 그들의 문화적 실천이 확장, 유지될 수 있는 이유는 새로운 관계 안에서 공고해지는 '문화예술인'으로서의 정체성에 있었다. 이렇게 사진 활동은 자본간전환을 통해 '적극적으로 자기 정체성을 구축하고 표현하는 중년 남성'이라는 상징적 지위를 부여하지만 이들이 얻게 된 상징자본이 작동하는 범위는 사생활의 영역이었다. 이에 따라 본 연구는 문화자본론의 관점에서 한국 사회를 이해할 때에 계급뿐만 아니라 '세대'도 유의미한 논의점이 될 수 있음을 고찰함으로써, 문화예술교육 논의에 있어서 문화자본론을 보다 유동적으로 이해했을 때 생겨날 다각적인 접근의 가능성을 엿볼 수 있다는 데에 의의가 있다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF