• Title/Summary/Keyword: knowledge bridge

Search Result 156, Processing Time 0.021 seconds

Joints: the weak link in bridge structures and lifecycles

  • Yanev, Bojidar
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.543-553
    • /
    • 2015
  • The condition of the vehicular bridge network in New York City, as represented by ratings obtained during biennial inspections is reviewed over a period of three decades. Concurrently, the bridges comprising the network are considered as networks of structural elements whose condition defines the overall bridge condition according to New York State assumptions. A knowledge-based matrix of assessments is used in order to determine each element's vulnerability and impact within the network of an individual structure and the network of City bridges. In both networks expansion deck joints emerge as the weak link. Typical joint failures are illustrated. Bridge management options for maintenance, preservation, rehabilitation and replacement are examined in the context of joint performance.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

A Review of Advanced Bridge Inspection Technologies Based on Robotic Systems and Image Processing

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Jung-Hoon;Yoon, Kwang-Won
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.17-26
    • /
    • 2018
  • To ensure safety of bridges, it is critical to inspect and assess physical and functional conditions regularly. Presently, most highway bridges in the U.S. are inspected visually. However, this method of inspection is often influenced by the bridge inspector's knowledge and experience. So, reliability and accuracy of inspection results may be problematic. To solve such problems, an extensive number of robotics systems and image processing techniques for bridge inspection methods have been proposed. These robotics systems and image processing techniques are used to measure various bridge conditions, such as apparent damage, displacement and dynamic characteristics. This paper provides a comprehensive review of robotics systems and image processing technologies used in bridge inspection.

Entropy-based optimal sensor networks for structural health monitoring of a cable-stayed bridge

  • Azarbayejani, M.;El-Osery, A.I.;Taha, M.M. Reda
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.369-379
    • /
    • 2009
  • The sudden collapse of Interstate 35 Bridge in Minneapolis gave a wake-up call to US municipalities to re-evaluate aging bridges. In this situation, structural health monitoring (SHM) technology can provide the essential help needed for monitoring and maintaining the nation's infrastructure. Monitoring long span bridges such as cable-stayed bridges effectively requires the use of a large number of sensors. In this article, we introduce a probabilistic approach to identify optimal locations of sensors to enhance damage detection. Probability distribution functions are established using an artificial neural network trained using a priori knowledge of damage locations. The optimal number of sensors is identified using multi-objective optimization that simultaneously considers information entropy and sensor cost-objective functions. Luling Bridge, a cable-stayed bridge over the Mississippi River, is selected as a case study to demonstrate the efficiency of the proposed approach.

Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.;Gomes, Renan R.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.269-281
    • /
    • 2019
  • This work addresses a three-dimensional nonlinear structural analysis of the constructive phases of a cable-stayed segmental concrete bridge using The Finite Element Method through ANSYS, version 14.5. New subroutines have been added to ANSYS via its UPF customization tool to implement viscoelastoplastic constitutive equations with cracking capability to model concrete's structural behavior. This numerical implementation allowed the use of three-dimensional twenty-node quadratic elements (SOLID186) with the Element-Embedded Rebar model option (REINF264), conducting to a fast and efficient solution. These advantages are of fundamental importance when large structures, such as bridges, are modeled, since an increasing number of finite elements is demanded. After validating the subroutines, the bridge located in Rio de Janeiro, Brazil, and known as "Ponte do Saber" (Bridge of Knowledge, in Portuguese), has been numerically modeled, simulating each of the constructive phases of the bridge. Additionally, the data obtained numerically is compared with the field data collected from monitoring conducted during the construction of the bridge, showing good agreement.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Vibration based damage localization using MEMS on a suspension bridge model

  • Domaneschi, Marco;Limongelli, Maria Pina;Martinelli, Luca
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.679-694
    • /
    • 2013
  • In this paper the application of the Interpolation Damage Detection Method to the numerical model of a suspension bridge instrumented with a network of Micro-Electro-Mechanical System sensors is presented. The method, which, in its present formulation, belongs to Level II damage identification method, can identify the presence and the location of damage from responses recorded on the structure before and after a seismic damaging event. The application of the method does not require knowledge of the modal properties of the structure nor a numerical model of it. Emphasis is placed herein on the influence of recorded signals noise on the reliability of the results given by the Interpolation Damage Detection Method. The response of a suspension bridge to seismic excitation is computed from a numerical model and artificially corrupted with random noise characteristic of two families of Micro-Electro-Mechanical System accelerometers. The reliability of the results is checked for different damage scenarios.

A analysis on dyanmic movements of Bridge status using High Rail monitoring systems (상시 계측결과를 이용한 경부고속철도 교량의 동적거동 분석)

  • Chung Jae-Min;Han Sang-Chul;Choi Il-Yoon;Lee Jun-Seok;Seo Hyeong-Lyel
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.934-939
    • /
    • 2004
  • The Korea high-speed rail, based on the French design. It also implements new concept to increase the strength of bridge deck by adding an impact factor (dynamic intensity factor) in static load. In order to assure the dynamic stability, SYSTRA and Jeseph Penzien, a professor in CEC (the US) conducted a dynamic stability review on design phase. Analyzing the review results, they developed design criteria for dynamic behavior. This study deal with operating PSC box GIRDER equipped with measurement equipment or measured data of Seoul $\∼$ Taejeon, P.S.C BOX GIRDER bridge and steel comsition bridge equipped with measurement equipment based on structual knowledge about configuration of measuring sensor, response analysis of structure when train runs was performed by using measured data of PSC box girder to directly compare with design criteria. moreover, the dynamic stability with comparison of high-speed rail construction criteria was reviewed and analyzed based on historical records.

  • PDF

A Study on the Health Monitoring System of Cable Bridge under Construction (특수교량의 시공 중 계측관리 시스템에 관한 연구)

  • Park, Ji-Hwan;Kong, Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.336-340
    • /
    • 2006
  • The cases of using new methods of big blocks are largely increasing on Recent large-scale bridge structures. So the accurate data of responses of bridges following environmental causes are required to be quickly recorded in order to predict. For this reason described above, the research on measuring system should be conducted for more knowledge of the details on application and stability of new methods. In this study, the new health monitoring system that can monitor the real behavior and damages of the bridge during all processes of construction is presented by analyzing cases of domestic and overseas bridge health monitoring system, and applied methods of following bridges.

  • PDF