• Title/Summary/Keyword: knockdown

Search Result 503, Processing Time 0.029 seconds

Autistic-like social deficits in hippocampal MeCP2 knockdown rat models are rescued by ketamine

  • Choi, Miyeon;Ko, Seung Yeon;Seo, Jee Young;Kim, Do Gyeong;Lee, Huiju;Chung, Heekyoung;Son, Hyeon
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.238-243
    • /
    • 2022
  • Autism or autism spectrum disorder (ASD) is a behavioral syndrome characterized by persistent deficits in social interaction, and repetitive patterns of behavior, interests, or activities. The gene encoding Methyl-CpG binding protein 2 (MeCP2) is one of a few exceptional genes of established causal effect in ASD. Although genetically engineered mice studies may shed light on how MeCP2 loss affects synaptic activity patterns across the whole brain, such studies are not considered practical in ASD patients due to the overall level of impairment, and are technically challenging in mice. For the first time, we show that hippocampal MeCP2 knockdown produces behavioral abnormalities associated with autism-like traits in rats, providing a new strategy to investigate the efficacy of therapeutics in ASD. Ketamine, an N-Methyl-D-aspartate (NMDA) blocker, has been proposed as a possible treatment for autism. Using the MeCP2 knockdown rats in conjunction with a rat model of valproic acid (VPA)-induced ASD, we examined gene expression and ASD behaviors upon ketamine treatment. We report that the core symptoms of autism in MeCP2 knockdown rats with social impairment recovered dramatically following a single treatment with ketamine.

Specific Knockdown of Nanog Expression by RNA Interference in P19 Embryonal Carcinoma Stem Cells (P19 배아 암종 줄기세포에서 RNA 간섭에 의한 Nanog 유전자 발현의 특이적 억제)

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.159-168
    • /
    • 2008
  • Nanog is a newly identified member of the homeobox family of DNA binding transcription factors that functions to maintain the undifferentiated state of stem cells. However, molecular mechanisms underlying the function of Nanog remain largely unknown. To elucidate the regulatory roles of Nanog involved in maintenance of P19 embryonal carcinoma (EC) stem cells, we transfected three small interfering RNA (siRNA) duplexes targeted against different regions of the Nanog gene into P19 cells. The Nanog siRNA-100 duplexes effectively decreased the expression of Nanog up to 30.7% compared to other two Nanog siRNAs, the Nanog siRNA-400 (67.9 %) and -793 (53.0%). When examined by RT-PCR and real-time PCR, the expression of markers for pluripotency such as Fgf4, Oct3/4, Rex1, Sox1 and Yes was downregulated at 48 h after transfection with Nanog siRNA-100. Furthermore, expression of the ectodermal markers, Fgf5 and Isl1 was reduced by Nanog knockdown. By contrast, the expression of other markers for pluripotency such as Cripto, Sox2 and Zfp57 was not affected by Nanog knockdown at this time. On the other hand, the expression of Lif/Stat3 pathway molecules and of the endoderm markers including Dab2, Gata4, Gata6 and the germ cell nuclear factor was not changed by Nanog knockdown. The results of this study demonstrated that the knockdown of Nanog expression by RNA interference in P19 cells was sufficient to modulate the expression of pluripotent markers involved in the self-renewal of EC stem cells. These results provide the valuable information on potential downstream targets of Nanog and add to our understanding of the function of Nanog in P19 EC stem cells.

  • PDF

Comprehensive Bioinformation Analysis of the MRNA Profile of Fascin Knockdown in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Luo, Lie-Wei;Li, Chun-Quan;Xie, Jian-Jun;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7221-7227
    • /
    • 2013
  • Background: Fascin, an actin-bundling protein forming actin bundles including filopodia and stress fibers, is overexpressed in multiple human epithelial cancers including esophageal squamous cell carcinoma (ESCC). Previously we conducted a microarray experiment to analyze fascin knockdown by RNAi in ESCC. Method: In this study, the differentially expressed genes from mRNA expression profilomg of fascin knockdown were analyzed by multiple bioinformatics methods for a comprehensive understanding of the role of fascin. Results: Gene Ontology enrichment found terms associated with cytoskeleton organization, including cell adhesion, actin filament binding and actin cytoskeleton, which might be related to fascin function. Except GO categories, the differentially expressed genes were annotated by 45 functional categories from the Functional Annotation Chart of DAVID. Subpathway analysis showed thirty-nine pathways were disturbed by the differentially expressed genes, providing more detailed information than traditional pathway enrichment analysis. Two subpathways derivated from regulation of the actin cytoskeleton were shown. Promoter analysis results indicated distinguishing sequence patterns and transcription factors in response to the co-expression of downregulated or upregulated differentially expressed genes. MNB1A, c-ETS, GATA2 and Prrx2 potentially regulate the transcription of the downregulated gene set, while Arnt-Ahr, ZNF42, Ubx and TCF11-MafG might co-regulate the upregulated genes. Conclusions: This multiple bioinformatic analysis helps provide a comprehensive understanding of the roles of fascin after its knockdown in ESCC.

X-linked Gene Expression Profiles by RNAi-Mediated BRCA1 Knockdown in MCF7 Cells

  • Song, Min-Ae;Park, Jung-Hoon;Ahn, Hee-Jeong;Ko, Jung-Jae;Lee, Su-Man
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.154-158
    • /
    • 2005
  • Germ-line mutations of the BRCA1 gene confer an increased risk for breast and ovarian cancers. BRCA1 in female cells is directly related with the maintenance of the inactive X chromosome (Xi). The effect by the loss of the BRCA1 function on the X chromosome gene expression remains unclear in cancer cells. We attempted to investigate the expression pattern of the X-linked genes by performing BRCA1 knockdown via RNA interference in the MCF7 breast cancer cell line. The transcriptional and translational levels of BRCA1 were decreased over 95% in the MCF7 cells after BRCA1 knockdown. The expression patterns of one hundred ninety X-linked genes were profiled by the X chromosome-specific cDNA arrays. A total of seven percent of the X-linked genes (14/190) were aberrantly expressed by over 2-fold in the MCF7-BRCA1 knockdown cells, which contained two up-regulated genes (2/190, 1 %) and 12 down-regulated genes (12/190, 6.3%). It is interesting that 72% of the aberrantly expressed X-linked genes were located on the Xq (10/14,) region. Our data suggests that BRCA1 may not be important to maintain X chromosome inactivation in cancer because the BRCA1 knockdown did increase the expression of the only one percent of X-linked genes in the human breast cancer cells.

OTUB1 knockdown promotes apoptosis in melanoma cells by upregulating TRAIL expression

  • Lee, Bok-Soon;Kang, Sung Un;Huang, Mei;Kim, Yeon Soo;Lee, Young-Sun;Park, Jae-Yong;Kim, Chul-Ho
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.608-613
    • /
    • 2021
  • Melanoma, the most serious type of skin cancer, exhibits a high risk of metastasis. Although chemotherapeutic treatment for metastatic melanoma improves disease outcome and patient survival, some patients exhibit resistance or toxicity to the drug treatment regime. OTUB1 is a deubiquitinating enzyme overexpressed in several cancers. In this study, we investigated the effects of inhibiting OTUB1 expression on melanoma-cell proliferation and viability and identified the underlying molecular mechanism of action of OTUB1. We did endogenous OTUB1 knockdown in melanoma cells using short interfering RNA, and assessed the resulting phenotypes via MTT assays, Western blotting, and cell-cycle analysis. We identified differentially expressed genes between OTUB1-knockdown cells and control cells using RNA sequencing and confirmed them via Western blotting and reverse transcription polymerase chain reaction. Furthermore, we investigated the involvement of apoptotic and cell survival signaling pathways upon OTUB1 depletion. OTUB1 depletion in melanoma cells decreased cell viability and caused simultaneous accumulation of cells in the sub-G1 phase, indicating an increase in the apoptotic-cell population. RNA sequencing of OTUB1-knockdown cells revealed an increase in the levels of the apoptosis-inducing protein TRAIL. Additionally, OTUB1-knockdown cells exhibited increased sensitivity to PLX4032, a BRAF inhibitor, implying that OTUB1 and BRAF act collectively in regulating apoptosis. Taken together, our findings show that OTUB1 induces apoptosis of melanoma cells in vitro, likely by upregulating TRAIL, and suggest that approaches targeting OTUB1 can be developed to provide novel therapeutic strategies for treating melanoma.

Effect of Silencing subolesin and enolase impairs gene expression, engorgement and reproduction in Haemaphysalis longicornis (Acari: Ixodidae) ticks

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.43.1-43.13
    • /
    • 2024
  • Importance: Haemaphysalis longicornis is an obligate blood-sucking ectoparasite that has gained attention due its role of transmitting medically and veterinary significant pathogens and it is the most common tick species in Republic of Korea. The preferred strategy for controlling ticks is a multi-antigenic vaccination. Testing the efficiency of a combination antigen is a promising method for creating a tick vaccine. Objective: The aim of the current research was to analyze the role of subolesin and enolase in feeding and reproduction of H. longicornis by gene silencing. Methods: In this study, we used RNA interference to silence salivary enolase and subolesin in H. longicornis. Unfed female ticks injected with double-stranded RNA targeting subolesin and enolase were attached and fed normally on the rabbit's ear. Real-time polymerase chain reaction was used to confirm the extent of knockdown. Results: Ticks in the subolesin or enolase dsRNA groups showed knockdown rates of 80% and 60% respectively. Ticks in the combination dsRNA (subolesin and enolase) group showed an 80% knockdown. Knockdown of subolesin and enolase resulted in significant depletion in feeding, blood engorgement weight, attachment rate, and egg laying. Silencing of both resulted in a significant (p < 0.05) reduction in tick engorgement, egg laying, egg hatching (15%), and reproduction. Conclusions and Relevance: Our results suggest that subolesin and enolase are an exciting target for future tick control strategies.

SIRT1 Knockdown Enhances the Differentiation of Human Embryonic Stem Cells into Pancreatic β Cells

  • Seo, Nan-Hee;Song, Hwa-Ryung;Han, Myung-Kwan
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.391-399
    • /
    • 2019
  • Nicotinamide is used to maturate pancreatic progenitors from embryonic stem cells (ESCs) into insulin-producing cells (IPCs). It has been known that nicotinamide inhibits the enzymatic activity of SIRT1, an NAD+-dependent deacetylase. Here we show that SIRT1 knockdown enhances the differentiation of human ESCs into IPCs. SIRT1 knockdown enhances the clustering size of IPCs and the expression of pancreatic genes including c-peptide, pancreas/duodenum homeobox protein 1 (PDX1), insulin, somatostatin, glucagon and Nkx6.1 in human ESC-derived IPCs. In addition, We found that IPCs differentiated from SIRT1 knockdowned human ESCs have more zinc compared to those from control human ESCs. Our data suggest that SIRT1 negatively regulates the differentiation of β cells from human ESCs.

Ten-eleven translocation 1 mediating DNA demethylation regulates the proliferation of chicken primordial germ cells through the activation of Wnt4/β-catenin signaling pathway

  • Yinglin Lu;Ming Li;Heng Cao;Jing Zhou;Fan Li;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.471-480
    • /
    • 2024
  • Objective: The objective of this study was to investigate the regulation relationship of Ten-eleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens. Methods: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/β-catenin signaling pathway. And the level of DNA methylation and hisotne methylation was also tested. Results: Results revealed that knockdown of Tet1 inhibited the proliferation of chicken PGCs and downregulated the mRNA expression of Cyclin D1 and cyclin-dependent kinase 6 (CDK6), as well as pluripotency-associated genes (Nanog, PouV, and Sox2). Flow cytometry analysis confirmed that the population of PGCs in Tet1 knockdown group displayed a significant decrease in the proportion of S and G2 phase cells, which meant that there were less PGCs entered the mitosis process than that of control. Furthermore, Tet1 knockdown delayed the entrance to G1/S phase and this inhibition was rescued by treated with BIO. Consistent with these findings, Wnt/β-catenin signaling was inactivated in Tet1 knockdown PGCs, leading to aberrant proliferation. Further analysis showed that the methylation of the whole genome increased significantly after Tet1 downregulation, while hydroxyl-methylation obviously declined. Meanwhile, the level of H3K27me3 was upregulated and H3K9me2 was downregulated in Tet1 knockdown PGCs, which was achieved by regulating Wnt/β-catenin signaling pathway. Conclusion: These results suggested that the self-renewal of chicken PGCs and the maintenance of their characteristics were regulated by Tet1 mediating DNA demethylation through the activation of Wnt4/β-catenin signaling pathway.

THE EFFECT OF Fam83h KNOCKDOWN ON THE AMELOGENIN GENE EXPRESSION IN THE AMELOBLAST CELL LINE (Fam83h 발현 억제에 의한 조법랑세포 Amelogenin 발현 변화)

  • Lee, Sook-Kyung;Lee, Kyung-Eun;Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.467-471
    • /
    • 2010
  • Amelogenesis imperfecta, one of the dental genetic disease, is clinically and genetically complex disease. Amelogenesis imperfecta can be classified into three major categories according to clinical phenotype; hypoplastic, hypomaturation, and hypocalcification. Recently a novel gene, Fam83h, was identified to cause autosomal dominant hypocalcification amelogenesis imperfecta, however its functional role in the pathogenesis of enamel defect is not known yet. So this study was aimed to identify the knockdown effect of Fam83h gene on the amelogenin mRNA expression via shRNA transfection into immortalized ameloblast cell line. The result showed that the knockdown of Fam83h did not influence the amelogenin expression. Further study of the functional role of Fam83h gene should be performed to understand the complex nature of amelogenesis as well as molecular pathogenesis of amelogenesis imperfecta.

Inhibition of Nemo-like Kinase Increases Taxol Sensitivity in Laryngeal Cancer

  • Dong, Ji-Rui;Guo, Nan;Zhao, Jian-Pu;Liu, Pin-Duo;Feng, Hui-Hong;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7137-7141
    • /
    • 2013
  • Several studies have shown that nemo-like kinase (NLK) plays a vital role in apoptosis of cancer cells. The present research concerned effects and mechanisms of Taxol on NLK knockdown human laryngeal cancerHep-2 cell lines in vitro. Using RNAi, methyl-thiazoltetrazolium (MTT) assays, real-time RT-PCR, Western blotting and flow cytometry analysis, growth and the cell cycle progression of NLK knockdown Hep-2 cells and expression of downstream molecules were observed. Cell growth was obviously suppressed in the Taxol treated group (P<0.001, 48 hours). Cell numbers of combined Taxol-based chemotherapy with lentivirus mediated RNAi treatment group (Lv-shNLK+Taxol goup) were significantly different from NLK-specific siRNA lentivirus infected group (Lv-shNLK group) (p<0.001). Flow cytometry analysis revealed that Lv-shNLK+Taxol caused the G0/G1-phase DNA content to decrease from 44.1 to 3.33% (p<0.001) and the S-phase DNA content to increase from 38.4 to 82.0% (p<0.001), in comparison with the Lv-shNLK+Taxol group. Immunoblot analysis showed that knockdown of NLK led to significant reduction in the levels of cyclin D1, PCNA and PARP, whereas cyclin B1 was elevated in. Cell growth was also obviously suppressed in the Hep-2 cell line, knockdown of NLK making them more sensitive to Taxol treatment. NLK is expected to become a target of new laryngeal cancer gene therapies.