• 제목/요약/키워드: klason lignin

검색결과 23건 처리시간 0.025초

고추 줄기의 화학 조성분 및 알칼리 펄프화 (Chemical Composition and Alkaline Pulping of a Stem of Red Pepper (Capsium annuum L.))

  • 김철현;김영욱;박성배;엄태진
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권2호
    • /
    • pp.26-32
    • /
    • 2004
  • 고추줄기의 화학 조성분과 lignin 화학구조를 분석하였고, 알칼리 증해 적성과 pulp의 섬유장을 측정한 후 목재와 비교하였다. 고추줄기의 화학 조성은 목재에 비해 추출성분, 회분함량이 높았으며, Klason lignin은 침·활엽수의 중간 정도의 함량을 나타내었다. 고추줄기 Klason lignin의 원소분석은 자작나무의 Klason lignin과 비교하여 탄소와 수소는 유사한 양으로 나타난 반면 산소의 함량은 낮게 나타나고 질소의 함량은 비교적 높게 나타났다. 니트로벤젠 산화분해는 S/V가 1보다 낮으므로 고추줄기 리그닌은 vanillin의 양이 syringaldehyde보다 상당히 많은 침엽수 리그닌과 유사한 구조를 보이는 것으로 추정되었다. 고추줄기의 알칼리 증해 적성은 활성알칼리 20%, 액비 1:7의 조건하에서 0.2%-Anthraquinone을 첨가하여 증해하는 것이 리그닌 함량과 수율면에서 최적 증해 조건이었다. 고추줄기 pulp의 섬유장은 약 0.47 mm로 보통 목재섬유에 비해서 매우 짧아 고추대 만으로 제지용 pulp를 제조하는 것보다는 목재 pulp와 혼합하여 사용하거나 비교적 단섬유가 많이 필요한 특수한 용도로 사용 가능하다.

미동정 부후균에 의한 소나무재의 Lignin 분해와 주사전자현미경(SEM)을 이용한 관찰 (Lignin Degradation of Pine Wood by Unidentified Decay Fungi and Observation by Scanning Electron Microscope)

  • 박헌;민경희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권4호
    • /
    • pp.71-80
    • /
    • 2003
  • 목재의 주성분 중 가장 분해가 어려운 리그닌을 분해하는 균주를 선발하기 위해 산림지역에서 채취한 부후목과 자실체로부터 균을 분리하였다. 리그닌 분해능은 활엽수보다 미생물 분해가 어렵다고 알려진 침엽수인 소나무재에 미생물을 처리하여 Klason 리그닌 정량을 통해 조사하였다. 또한 선발균에 의한 소나무재의 분해과정과 부후정도를 주사전자현미경(Scanning Electron Microscope ; SEM)을 이용해 조사하였다. 선발 균주 중 CJ-6에서 소나무 리그닌의 분해율이 49.48%로 가장 높았으며, 이것은 리그닌 분해 우수 균주로 알려진 Trametes versicolor의 40.58%와 비교해 보았을 때 리그닌 분해력이 더 우수하였다. 균주들 중 리그닌 분해력이 좋게 나타난 2개의 균주를 대상으로 부후에 의한 목재조직의 변화를 관찰하였는데 두 균주의 부후형이 비슷한 경향을 나타내었다. 부후 20일 경과에서는 균사의 침입은 있었으나 아직 목재는 건전한 상태를 유지하고 있었으며, 60일 간의 부후에서는 부후가 어느 정도 진행되어 가도관 벽과 방사조직의 세포벽의 일부가 분해되어 있음을 알 수 있었다. 100일간 부후가 진행된 경우에는 부후가 상당히 진행되어 가도관 세포벽 안쪽이 분해가 많이 진행되어 있었으며, 방사조직의 세포벽이 많이 분해되어 있어 세포간의 구별이 어려웠다.

리그닌분해(分解)와 리그닌분해효소(分解酵素) 생산(生産)을 위한 목재부후균(木材腐朽菌)의 선발(選拔)과 평가(評價)(I) - 고활성(高活性) 리그닌분해균(分解菌)의 선발(選拔) - (Screening and Evaluating of Wood-Rotting Fungi for Lignin Degradation and Ligninolytic Enzyme Production(I) - Screening of High Active Lignin-Degrading Fungi -)

  • 정현채;박서기;김병수;박종열
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권4호
    • /
    • pp.108-116
    • /
    • 1995
  • Guaiacol을 첨가한 potato-dextrose agar배지와 참나무 목분 배지를 이용하여 배지의 발색 정도를 정량함으로써 리그닌 분해와 리그닌 분해효소 생산을 위한 우수 균주분리를 시도하였다. 배지의 발색정도와 리그닌 분해율과는 정의 상관을 나타내어 미지균의 리그닌 분해력 추정을 가능하게 하였으며, 버섯의 자실체와 부후재로 부터 분리한 리그닌분해균 중에서 리그닌 분해력과 laccase활성이 우수한 LKY-12, LKY-7과 Coriolus versicolor-13 균주를 선발하였다. 이들 균주의 리그닌 분해율은 30~35% 범위이고, glucose-peptone broth에서 리그닌 분해효소 활성이 다른 균주에 비하여 매우 높아서 우수균주의 특성을 나타냈으며, 생물학적인 펄프화 및 표백 그리고 리그닌분해효소 생산에 이용 가능한 균주로 생각되었다.

  • PDF

Anatomical, Chemical, and Topochemical Characteristics of Transgemic Poplar Down-regulated with O-methyltransferase

  • Wi, Seung Gon;Lee, Kwang Ho;Park, Byung Dae;Park, Young Goo;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권3호
    • /
    • pp.15-24
    • /
    • 2004
  • The present work was undertaken to investigate the anatomical and chemical characteristics of transgenic poplar down-regulated with antisense OMT gene. Also the distribution of lignin in transgenic poplar trees was investigated at cellular level. No visible abnormal phenotype was observed in the fibers and vessel elements of transgenic poplar. Any marked differences in the staining intensities of Wiesner and Mäule color reaction were not identified in the transgenic poplar. TEM micrographs did not show any staining intensities in the cell walls stained with KMnO4. Interestingly, the UV spectroscopy of semi-thin sections exhibited a distinct decrease of lignin absorption at 280 nm in the vessel walls, indicating transgenic poplar wood with lower amount of guaiacyl lignin in vessel elements. Chemical composition of antisense OMT poplar was almost identical to that of wild-type poplar. Klason lignin content of transgenic poplar did not show any significant difference from that of the controls. The solid state NMR spectra revealed the transgenic poplar with only slightly more syringyl lignin than the control. The present work showed that antisense OMT gene constructed in the poplar was not enough to reduce the overall content of Klason lignin, and suggested that the expression of transformation was confined to vessel walls.

목분(木粉)의 Autohydrolysis후(後) 탈리그닌처리(處理)가 섬유소기질(纖維素基質)의 수율(收率), 리그닌함량(含量)과 효소가수분해(酵素加水分解)에 미치는 영향(影響) (Effect of Delignification Treatment after Autohydrolysis on Yields of Cellulosic Substrates, Lignin Contents, and Enzymatic Hydrolysis)

  • 박종문;안원영;신동소
    • Journal of the Korean Wood Science and Technology
    • /
    • 제12권4호
    • /
    • pp.19-30
    • /
    • 1984
  • This experiment was carried out to investigate the effects of autohydrolysis and extraction conditions on the separation of the chemical substances, the extractability of lignin by dioxane, and the yield of reducing sugars from cellulosic substrates by using a commercial cellulase derived from Trichoderma viride. Air-dried wood meals through 0.42mm (40 mesh) screen and retained on 0.25 mm (60 mesh) of Populus alba-glandulosa and Pinus koraiensis were autohydrolyzed with water at $180^{\circ}C$ for 30 and/or 60 minutes in a 6 liter stainless-steel digester with or without 2% 2-naphthol. The hydrothermally-treated wood meals were extracted the lignin with 100%, 90%, 75% and 50% dioxane solutions at $70^{\circ}C$ for 4 hours, respectively. The results obtained were as follows; 1) After autohydrolysis of Populus alba-glandulosa, the yield of wood meals decreased with lengthening the auto hydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. In case of Pinus koraiensis, the yield was not affected by 2%, 2-naphthol addition at the autohydrolysis in the digester. 2) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the yield of wood meals decreased with lengthening the autohydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. Extraction of 50% dioxane solution was the best solvent for the yield among the solutions of 100%, 90%. 75% and 50% dioxane. In case of Pinus koraiensis, the yield was not affected by 2% 2-naphthol addition and the solution of 90% dioxane was the poorest solvent for the yield. 3) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the Klason lignin content in cellulosic substrates for enzymatic hydrolysis decreased with lengthening the autohydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. Klason lignin content was the lowest after extraction by 90% or 75% dioxane solution. The content was also affected by interaction of the three factors-autohydrolysis time, 2% 2-naphthol addition and concentration of dioxane. In case of Pinus koraiensis, the Klason lignin content increased with 2% 2-naphthol addition but was not affected by the concentration of dioxane solution. 4) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the extractable Klason lignin content by extraction increased with lengthening the auto hydrolysis time from 30 minutes to 60 minutes and with 2% 2-naphthol addition. The extractable lignin content was the highest after extraction by 90% or 75% dioxane solution. In case of Pinus koraiensis, the extractable lignin content increased with 2% 2-naphthol addition. Extractions by 100%, 90% and 50% dioxane solutions were more effective for the extraction of Klason lignin than by 75% dioxane solution. 5) After autohydrolysis and lignin extraction of Populus alba-glandulosa, the yield of reducing sugars increased with lengthening the autohydrolysis time from 30 minutes to 60 minutes but was not affected by 2% 2-naphthol addition and the concentration of dioxane. The yield of reducing sugars after enzymatic hydrolysis was slightly higher by extractions with 90%, 75% and 50% dioxane solutions than with 100% dioxane. In case of Pinus koraiensis, the yield of reducing sugars was not affected by 2% 2-naphthol addition but affected by the concentration of dioxane. The yield of reducing sugars was the highest in cellulosic substrates extracted by 100% dioxane solution.

  • PDF

폭쇄처리(爆碎處理)된 목질계(木質系) Biomass의 산소가수분해(酸素加水分解)(I) -리그닌의 함량(含量)과 섬유소(纖維素)의 결정화도(結晶化度)가 산소가수분해(酸素加水分解)에 미치는 영향 (The Enzymatic Hydrolysis of Exploded Woody Biomass(I) -Effects of Lignin Contents and Cellulose Crystallinity on the Enzymatic Hydrolysis-)

  • 박영기;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권3호
    • /
    • pp.53-60
    • /
    • 1993
  • Substrates used were hardwood-Suwon poplar-(Populus alba${\times}$glandulosa L.) and softwood-pitch pine-(Pinus rigida M.). And these substrates were steam exploded then treated with sodium chlorite at 75$^{\circ}C$ with occasional stirring in order to obtain samples which had different lignin contents and crystallinity. And then this resulting samples incubated with a commercial cellulase derived from Trichoderma ressei. The contents of Klason lignin were decreased as the increasing of the ratio of sodium chlorite in the two species. The effect of hardwood was more effective than that of softwood in the same ratio of sodium chlorite. The minimum contents of Klason lignin were 0.8% and 5.1% respectively. And the crystallinities of cellulose were increased very little as increasing of the ratio of sodium clorite. The hydrolysis extent of the two species were increased as the increasing of delignification. Especially, the hydrolysis extent of hardwood was more higher than that of softwood. The maximum hydrolysis extent were 89.8% and 71.1%, respectively.

  • PDF

Impact of Residual Extractives and Hexenuronic Acid on Lignin Determination of Kraft pulps

  • Shin Soo Jeong;Schroeder Leland R;Lai Yuan Zong
    • 펄프종이기술
    • /
    • 제36권5호
    • /
    • pp.62-68
    • /
    • 2004
  • The amount of non-lignin components in unbleached and oxygen-delignified kraft pulps and their impact on lignin determinations was investigated. The lignin analyses investigated were kappa number and Klason lignin in conjunction with acid-soluble lignin. The species investigated were loblolly pine, and aspen. The non-lignin components that impacted on lignin determination were residual extractives and hexenuronic acid in unbleached and oxygen-delignified kraft pulps. In the hardwoods, significant amounts of extractives remained after kraft pulping and oxygen delignification. These residual extractives in the hardwood pulps had an impact on the lignin determination, more so on the acid lignin method than kappa number. Hexenuronic acid only impacts on kappa number determination both softwood and hardwood pulps, not on acid lignin. Hexeneuronic acid contributed as lignin content more in aspen than pine pulps, and more in oxygen-delignified than unbleached kraft pulps. Impact of hexenuronic acid on should be corrected both softwood and hardwood pulps for accurate kappa number.

Relationship between Lignin Content and the Durability of Wood Pellets Fabricated Using Larix kaempferi C. Sawdust

  • Yang, In;Jeong, Hanseob;Lee, Jae Jung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권1호
    • /
    • pp.110-123
    • /
    • 2019
  • This work was conducted to examine the relationship between lignin content and the durability of larch (LAR) pellets. LAR sawdust was immersed in tap water (TW), sulfuric acid (AC) and sodium hydroxide (AK) solutions, and then the immersed sawdust was used for pellet fabrication. Klason lignin (KL) content of the immersed LAR, contents of soluble lignin (SL) and monomeric sugars liberated from the immersion of LAR, and durability of LAR pellets were measured. KL content decreased as the concentration of AC and AK solutions increased, but glucose content increased with increase in AC and AK concentration. Durability of wood pellets fabricated using non-immersed LAR sawdust was the highest, followed by those made using TW-, AK- and AC-immersed sawdust. LAR pellets became more durable as the concentration of KL and SL increased, but a significant positive correlation was found only between pellet durability and KL content. Through the fluorescent microscopic observation and SEM-EDX analysis, it was verified that lignin content of non-immersed LAR pellets was higher than that of AC- and AK-immersed LAR pellets. These results suggest that lignin might contribute to an increase in inter-particle bonding in wood pellets.

Comparative study of some analytical methods to quantify lignin concentration in tropical grasses

  • Velasquez, Alejandro V.;Martins, Cristian M.M.R.;Pacheco, Pedro;Fukushima, Romualdo S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권11호
    • /
    • pp.1686-1694
    • /
    • 2019
  • Objective: Lignin plays a relevant role in the inhibition of cell wall (CW) structural carbohydrate degradation. Thus, obtaining accurate estimates of the lignin content in tropical plants is important in order to properly characterize the mechanism of lignin action on CW degradation. Comparing conflicting results between the different methods available for commercial use will bring insight on the subject. This way, providing data to better understand the relationship between lignin concentration and implications with tropical forage degradation. Methods: Five grass species, Brachiaria brizantha cv $Marand{\acute{u}}$, Brachiaria brizantha cv $Xara{\acute{e}}s$(MG-5), Panicum maximum cv Mombaça, Pennisetum purpureum cv Cameroon, and Pennisetum purpureum cv Napier, were harvested at five maturity stages. Acid detergent lignin (ADL), Klason lignin (KL), acetyl bromide lignin (ABL), and permanganate lignin (PerL) were measured on all species. Lignin concentration was correlated with in vitro degradability. Results: Highly significant effects for maturity, lignin method and their interaction on lignin content were observed. The ADL, KL and ABL methods had similar negative correlations with degradability. The PerL method failed to reliably estimate the degradability of tropical grasses, possibly due to interference of other substances potentially soluble in the $KMnO_4$ solution. Conclusion: ADL and KL methods use strong acid ($H_2SO_4$) and require determination of ash and N content in the lignin residues, therefore, increasing time and cost of analysis. The ABL method has no need for such corrections and is a fast and a convenient method for determination of total lignin content in plants, thus, it may be a good option for routine laboratory analysis.

고염분 하에서 성장한 해송 세포벽의 화학 성상 (Chemical Characteristics of Cell Wall in Pinus thunbergii Parl. Grown with High Salinity)

  • 김강재;엄태진
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.144-150
    • /
    • 2015
  • Stems of Pinus thunbergii Parl. grown with high salinity were analyzed for chemical characteristics. Stem of 2 years was rich in soluble compounds and stem of 3 years reduced the amount of the soluble compound. But, the lignin content have not seen a large change. Also, Klason lignins of stem of 2 and 3 years has not changed in nitrogen and hydrogen content. In Klason process, it was significantly increased the carbon concentration due to the hydrolysis of the carbohydrate. In addition, the accumulation of xylan from Pinus thunbergii Parl. with salinity treatment were increased noticeably. Finally, functional group of Pinus thunbergii Parl. with salinity treatment were not changed.