• Title/Summary/Keyword: kinetochore position

Search Result 2, Processing Time 0.021 seconds

Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide

  • Ji, Jae-Hoon;Jang, Young-Joo
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.709-716
    • /
    • 2006
  • Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the N-terminus region, whereas the non-catalytic region in the C-terminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domain-specific target proteins of Plk1, we constructed an N-terminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and C- termini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.

Taxonomic Studies of Genus Juniperus (향나무속(屬)의 분류학적(分類學的) 연구(硏究))

  • Kim, Su In
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.338-350
    • /
    • 1988
  • In order to solve the taxonomic problems of the genus Juniperus growing in South Korea, an identification key of the genus and species was developed bayed un flower structure, cane and seed shape, branching habit, tree form, leaf characteristics etc. of the 7 native species and the a exotic cultivars. The typical pattern of karyotype found by chromosome analysis of the species was used for the identification among morphologically similar species. The length of chromosome were ranged $9{\sim}15{\mu}m$ in all studied specie. J. chinensis, var. procumbens, and var. kaizuka sere tetraploid, 4n=44, var. globosa, var. procumbens, var. horizontalis, J. virginiada, J. rigida, J. rigida var. longicarpa, and J. coreana were diploid, 2n=22. The species in the Sabina section showed large variation in the length of chromosome and kinetochore position. The species in the Oxycedrus section showed the cytological characteristics that the 11th chromosome t-type(acrocentric), and the m-type abundant chromosome set was relatively uniform as compared to those of the Sabina section. The species in the Sabina section, which are planted in the large city area, show great morphological variation because many different ecotypes were mixed and often crossed among them. In summary, this study was able to make clear identification and to find out similarity among Juniperus, species by the morphological and cytological analysis.

  • PDF