• Title/Summary/Keyword: kinetic gait

Search Result 71, Processing Time 0.021 seconds

Effect of Active Change of Foot Progression Angle on Lower Extremity Joint During Gait (보행 시 의도적인 발 디딤 각도 변화가 하지 관절 부하에 미치는 영향)

  • Go, Eun-Ae;Hong, Su-Yeon;Lee, Ki-Kang;An, Keun-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • Efficient gait is compensate for a lack of exercise, but the wrong walking can cause disease that joints, muscles, brain and body structure(Scott & Winter, 1990). Also many researchers has been studied gait of positive mechanism using analytical methods kinetic, kinematic. This study is to identify nature of knee adduction moment, depending on different foot progression angle and the movement of rotation of pelvis and body. Health study subject conducted intended walking with three different angles. The subjects of this study classified three types of walking; walk erect, pigeon-toed walk and an out-toed gait. Ten university students of K without previous operation and disease record selected for this study. For accuracy of this study, three types of walking carried out five times with 3D image analysis and using analysis of ground reaction force to analyze nature of knee adduction moment and the movement of rotation of pelvis and body. Firstly, the HC(heel contact) section value of intended walk erect, pigeon-toed walk and an out-toed gait was not shown statistically significant difference but TO(toe off) section value was shown that the pigeon-toed walk statistically significant. The value of pigeon-toed walk was smallest knee adduction moment(p< 0.005). Secondly, X axis was the change of rotation movement body and pelvis when walk erect, pigeon-toed walk and an out-toed gait. Shown statistically Y axis was not shown statistically significant but Z axis statistically significant(p<0.05). These result show the significant differences on TO section when walking moment reaches HC, it decides the walking types and rotates the foot.

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

Kinetic Analysis of Foot Balance and Gait Patterns in Patients with Adult Spinal Disease (성인 척추질환자의 발균형 및 보행형태에 대한 운동역학적 분석)

  • Park, Jae Soung;Lee, Joong Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • Objective: The aim of this study was to provide kinematic data on the characteristics of spinal disease patients by comparing and analyzing kinematic variables related to foot balance and gait pattern of spinal disease. Method: The subjects of the study included 40 adult men and 60 adult women who visited the hospital in Busan. Patients who were diagnosed with spinal disease by a physician through X-ray examination were selected as subjects for the diagnosis of vertebral disc herniation, spinal stenosis, spinal disease diagnosed with spinal disease and the general public. Left and right foot pressure and contact area were checked by Gaitview pro meter. X-ray photographs were taken with a Zen-2090 mobile fluoroscopy under physicians' direct participation. One-way ANOVA was performed to compare the differences between the kinematic variables and post-hoc was performed by the Duncan method. Results: The difference in contact area between the left foot and the right foot was $115.30{\pm}14.15cm^2$ in the left side and $124.25{\pm}13.65cm^2$ in the left side in the spinal disease patients. The difference in pressure between the left and right side of the spinal disease patients was wider than that of the general people. Especially, the right side of the spinal disease patients showed a larger area of left foot contact than the general population. Conclusion: Spinal disease patients have wider contact area of the left foot than those of the general population. In the case of right spinal disease, the left foot support area is widened due to pain. In the gait, women showed slightly more posterior body center than men, and the upper body muscle imbalance and immobilization due to the spinal disease caused imbalance of the muscles moving to the lower limb, It was analyzed to inhibit movement.

A Kinetic Analysis of the Lower Extremity on the Normal and Abnormal Specificity of Walking on Stair for Twenties (이십대 청년의 정상 및 비정상 계단보행특성에 따른 하지의 운동역학적 분석)

  • Kim, Young-Ji;Lee, Young-Shin;Kim, Chang-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.391-396
    • /
    • 2011
  • Gait is walking attitude and indicating state. The body's gait is a good mix in the center of body mechanics and exercises to wake up gently at the same time switch is a pass which is complicated at legs various joints. The shifting action what swing phase and stance phase rhythmic movement of body. One from piece moves with different dot. Especially plain walking and stair walking as a vehicle has been used frequently. Characteristics of the stair walking while the balanced the horizontal and vertical movement. Stair walking often takes place in everyday. It requires large range more than walking at plain in the moment and joint range of gait motion. And consistently applied to joints and various types of loads at legs joint may involve joint disorders. In this study, spastic cerebral palsy existing artificial limbs for disabled people when developing calibration equinus deformity patients induce muscle pain when walking on stairs independently, to reduce the research. Comparing the characteristics of the walking up the stairs for analysis patellofemoral joint pain as a result it is to provide engineering data.

Gait Analysis of Patients with Tumor Prosthesis around the Knee (인공 종양대치물을 이용한 사지구제술후의 보행 분석)

  • Lee, Sang-Hoon;Chung, Chin-Youb;Kim, Han-Soo;Kim, Byung-Sung;Lee, Han-Koo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1997
  • Prosthetic replacement is one of the most common methods of reconstruction after resection of malignant tumor around the knee. Gait analysis provides a relative objective data about the gait function of patients with prosthesis. The purpose of this study was to compare the gait pattern of the patients who underwent limb salvage surgery with prosthesis for distal femur and that of patients with prosthesis for proximal tibia. This study included ten patients (4 males, 6 females, mean age 22.7 years, range 14-36) who underwent a wide resection and Kotz hinged modular reconstruction prosthesis replacement and six normal adult(Control). The site of bone tumor was the distal femur (Group 1) in six patients and proximal tibia (Group 2) in 4 patients. The follow-up period ranged from 15 to 82 months (mean : 33 months). The evaluation consisted of clinical assessment, radiographic assessment, gait analysis using VICON 370 Motion Analysis System. The gait analysis included the linear parameters such as, walking velocity, cadence, step length, stride length, stance time, swing time, single support and double support time and the three-dimensional kinematics (joint rotation angle, velocity of joint rotation) of ankle, knee, hip and pelvis in sagittal, coronal and transverse plane. For the kinetic evaluation, the moment of force (unit: Nm/kg) and power (unit: Watt/kg) of ankle, knee and hip joint in sagittal, coronal and transverse plane. In the linear parameters, cadence, velocity, step time and single support were decreased in both group 1 and group 2 compared with control. Double support decreased in group 2 compared with control significantly(p<.05). In contrast to our hypothesis, there was no significant difference between group 1 and group 2. In Kinematics, we observed significant difference (p<.05) of decreased knee flexion in loading response (G2

  • PDF

The Effects of Dynamic Functional Electrical Stimulation With Treadmill Gait Training on Functional Ability, Balance Confidence and Gait in Chronic Stroke Patients

  • Cho, Young-Ki;Ahn, Jun-Su;Park, Yong-Wan;Do, Jung-Wha;Lee, Nam-Hyun;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.23-33
    • /
    • 2014
  • The aim of this study was to evaluate the effects of walking on a treadmill while using dynamic functional electrical stimulation (Dynamic FES) on functional ability and gait in chronic stroke patients. This was a prospective, randomized controlled study. Twelve patients with chronic stroke (>24 months) who were under grade 3 in dorsiflexor strength with manual muscle test were included and randomized into intervention (Dynamic FES) ($n_1$=7) and control (FES) ($n_2$=5). Both the Dynamic FES group and FES group were given a neuromuscular development treatment. The Dynamic FES group has implemented a total of 60 minutes of exercise treatment and gait training with Dynamic FES application. The FES group, with the addition of applying FES while sitting, has also implemented a total of 90 minutes of gait training on treadmill after the exercise treatment. Both two groups accomplished the program, twice a week, for a total of 24 times in a 12-week period. Exercise treatment, gait training on treadmill, and both Dynamic FES and FES were implemented for 30 minutes each. Korean version activities-specific balance confidence scale (K-ABC) was measured to determine self-efficacy in balance function. Timed up and go (TUG) test was performed to evaluate the physical performance. K-ABC, TUG, Berg balance scale (BBS), modified physical performance test (mPPT) and G-walk were evaluated at baseline and at 12 weeks. After 12 weeks, statistically significant differences (p<.05) were apparent in the Dynamic FES group in the changes in K-ABC and BBS. mPPT, TUG, gait speed, stride length and stance phase duration (%) were compared with the FES group. K-ABC had higher correlation to BBS, along with mPPT to TUG. Our results suggest that walking with Dynamic FES in chronic stroke patients may be beneficial for improving their balance confidence, functional ability and gait.

Kinetic analysis of the lower limb in visual handicap children (시각장애 아동의 보행 시 하지의 운동역학적 분석)

  • Yi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3952-3958
    • /
    • 2011
  • This study was to investigate the difference in gait pattern between the visual handicap children and non handicap children in by analyze the biomechanical variation and pattern of lower limb. Therefore, we have made a choice of four visually handicapped children and two subjects, who had no medical disorder for the last six months. In order to collect the gait pattern data of each group, we have used six infrared cameras and one forceplate Also, we have used QTM program to collect the raw data and Visual3D program to calculate kinetic variable. The results were as follows, An/Posterior GRF of breaking phase and propulsion phase in stance phase was lower in visual handicapped children than that of non handicapped children and breaking phase was longer than propulsion phase. extension moment at the ankle was quite lower than general gait pattern and there was little variation at the knee joint which makes the results differ from the general gait pattern. However, hip joint moment was relatively higher than that of other joints. Mechanical variation of lower limb, in case of foot and shank, showed similar results. but generated very low mechanical energy. In thigh, the form of mechanical energy generation was slightly different in each group but generated more mechanical energy than other segments.

Gait Type Classification Based on Kinematic Factors of Gait for Exoskeleton Robot Recognition (외골격 로봇의 동작인식을 위한 보행의 운동학적 요인을 이용한 보행유형 분류)

  • Cho, Jaehoon;Bong, wonwoo;Kim, donghun;Choi, Hyeonki
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • The exoskeleton robot is a technology developed to be used in various fields such as military, industry and medical treatment. The exoskeleton robot works by sensing the movement of the wearer. By recognizing the wearer's daily activities, the exoskeleton robot can assist the wearer quickly and efficiently utilize the system. In this study, LDA, QDA, and kNN are used to classify gait types through kinetic data obtained from subjects. Walking was selected from general walking and stair walking which are mainly performed in daily life. Seven IMUs sensors were attached to the subject at the predetermined positions to measure kinematic factors. As a result, LDA was classified as 78.42%, QDA as 86.16%, and kNN as 87.10% ~ 94.49% according to the value of k.

Effect of Artificial Leg Length Discrepancy on 3D Hip Joint Moments during Gait in Healthy Individuals (건강한 성인에서 인위적 다리길이 차이가 보행 중 3차원 엉덩관절 모멘트에 미치는 효과)

  • Jo, Min-Ji;Kim, Dong-Hyun;Han, Dong-Wook;Choi, Eun-Jin;Kim, Ye-Seul;Kim, Yong-Wook
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.391-399
    • /
    • 2019
  • Purpose: This study investigated the three-dimensional moment values of the hip joint for subjects with artificial leg length alterations and subjects with unaltered leg lengths. Methods: Forty-two healthy adults (8 men, 34 women) participated in this study. The selected subjects were able to walk normally, had less than a 1 cm leg length discrepancy, and were instructed to wear shoes that fit their feet. The study participants performed 8 dynamic gait trails to measure the hip joint moment using a three-dimensional motion analysis system. Kinetic and dynamic three-dimensional gait analysis data were collected from infrared cameras, and a force plate was used to standardize the weight of each subject. Results: There were significant correlations between the differences in the leg length discrepancy during right extension, right flexion, right internal rotation, and left extension in hip joint moments (p<0.05). There were significant correlations between the differences in shoe conditions during left extension, right flexion, right extension, and right internal rotation in the hip moments (p<0.05). Conclusion: This study suggests that a leg length discrepancy can affect hip joint moment, which may further exacerbate musculoskeletal disorders, such as osteoarthritis in lower extremity joints. Therefore, further studies should be conducted to verify the impact of clinical interventions on differences in hip joint moment values to correct leg length discrepancies and prevent osteoarthritis in lower extremity joints.

Effects of the Hip Internal Rotation Gait on Gluteal and Erector Spinae Muscle Activity (고관절 내회전 보행이 둔부 근육과 척추 기립근의 근활성도에 미치는 영향)

  • Kwon, Oh-Yun;Won, Jong-Hyuck;Oh, Jae-Seop;Lee, Won-Hwee;Kim, Soo-Jung
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • The purpose of this study was to identify the effect of the hip internal rotation on gluteal and erector spinae muscle electromyographic (EMG) activity during treadmill walking. Eleven healthy subjects were recruited. All subjects performed treadmill walking while maintaining the hip in neutral position (condition 1) and in internal rotation (condition 2). Surface EMG activity was recorded from four muscles (gluteus maximus (GM), gluteus medius (GMED), tensor fascia latae (TFL), and erector spinae (ES)) and the hip internal rotation angle was measured using a three dimensional motion analysis system. The gait cycle was determined with two foot switches, and stance phase was normalized as 100% stance phase (SP) for each condition using the MatLab 7.0 program. The normalized EMG activities according to the hip rotation (neutral or internal rotation) were compared using a paired t-test. During the entire SP of treadmill walking, the EMG activities of GM in condition 1 were significantly greater than in condition 2 (p<.05). The EMG activities of TFL and ES in condition 2 were significantly greater than in condition 1 (p<.05). The EMG activities of the GMED in condition 1 were significantly greater than in condition 1 (p>.05) except for 80~100% SP. Further studies need randomized control trials regarding the effect of hip internal rotation on the hip and lumbar spine muscle activity. Kinetic variables during gait or going up and down stairs are also needed.

  • PDF