• Title/Summary/Keyword: kinetic constants

Search Result 411, Processing Time 0.028 seconds

Anion Effects on the Aminolysis of Carboxyl-Containing Esters by Triamines in Dimethyl Sulfoxide

  • Suh Junghun;Kim Yongho;Chang Sae Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.72-74
    • /
    • 1989
  • Aminolysis of various carboxyl-containing ester substrates by triamines was kinetically studied in dimethyl sulfoxide (DMSO) in the presence of p-toluenesulfonic acid (TSA) or in the presence of sulfuric acid and potassium iodide (KI). In the presence of TSA or KI, the pseudo-first-order rate constants ($k_o$) were proportional to the total amine concentration ($N_o$). This stands in marked contrast with the corresponding reactions carried out with sulfuric acid added as the sole additive, in which saturation kinetic behavior of ko with respect to No was manifested. This indicates that complex formation between the ester substrate and the amine is greatly suppressed by the addition of TSA or KI. The second-order rate constants obtained in the presence of TSA or KI were substantially greater than those measured in the absence of any additive. These kinetic features were explained in terms of tight interaction between the protonated amines with I- or TSA-. Thus, the results were related to the hydrogen bonding that involves DMSO, bisulfate ion, I-, TSA-, and the protonated forms of triamines.

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

Stoichiometric Solvation Effects. Product-Rate Correlation for Solvolyses of Phenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기율;강금덕;오혁근;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.520-524
    • /
    • 1996
  • Solvolyses of phenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for phenyl chloroformate with YCl (based on 2-adamantyl chloride) show marked dispersions into three separate lines for the three aqueous mixtures with a small m value (m< 0.2) and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or carbonyl addition for phenyl chloroformate solvolyses based on mass law and stoichiometric solvation effect studies.

Hydrolysis of p-Nitrophenyl Carboxylic Ester in N,N-Dimethyl-N-dodecyl-N-(2-methylbenzimidazoyl) Ammonium Chloride Micellar Solution (N,N-Dimethyl-N-Dodecyl-N-(2-methylbenzimidazoyl) Ammonium Chloride 미셀 용액속에서 p-Nitrophenyl Carboxylic Ester의 가수분해)

  • Kim, Jeung-Bea;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.509-516
    • /
    • 2008
  • New functional surfactant, N,N-dimethyl-N-dodecyl-N-(2-methyl benzimidazoyl) ammonium chloride(DDBAC) having benzimidazole(BI) functional group have been synthesized and the critical micellar concentration of DDBAC measured by surface tentiometry and electric conductivity method was $8.9{\times}10^{-4}M$. Micellar effects in DDBAC functional surfactant solution on the hydrolysis of p-nitrophenylacetate(p-NPA), p-nitro-phenylpropionate(p-NPP) and p-nitrophenylvalerate(p-NPV) were observed with change of various pH (Tris-buffer). The pseudo first rate constants of hydrolysis of p-NPA, p-NPP and p-NPV in optimum concentration of DDBAC solution increase to about 160, 280 and 600 times, respectively, as compared with those of aqueous solution at pH 8.00(Tris-buffer). It is considered that benzimidazole functional moiety accelerates the reaction rates of hydrolysis because they act as nucleophile or general base. In optimum concentration of DDBAC solution, the rate constants of hydrolysis of p-NPP and p-NPV increase to about 1.5 and 3.0 times, respectively, as compared with that of p-NPA. It means that the more the carbon numbers of alkyl group of substrates, the larger the binding constants between DDBAC micelle and substrates are. To know the hydrolysis mechanism of p-NPCE(p-NPA, p-NPP and p-NPV), the deuterium kinetic isotope effects were measured in $D_2O$ solutions. Consequently the pseudo first order rate constant ratios in $H_2O$ and $D_2O$ solution, $k_{H_2O}/k_{D_2O}$, were about $2.8{\sim}3.0$ range. It means that the mechanism of hydrolysis were proceeded by nucleophile and general base attack in approximately same value.

A STUDY ON THE IMPROVEMENT OF κ-εTURBULENCE MODEL FOR PREDICTION OF THE RECIRCULATION FLOW (재순환유동 예측을 위한 κ-ε 난류모델 개선에 대한 연구)

  • Lee, Y.M.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.12-24
    • /
    • 2016
  • The standard ${\kappa}-{\varepsilon}$ and realizable ${\kappa}-{\varepsilon}$ models are adopted to improve the prediction performance on the recirculating flow. In this paper, the backward facing step flows are used to assess the prediction performance of the recirculation zone. The model constants of turbulence model are obtained by the experimental results and they have a different value according to the flow. In the case of an isotropic flow situation, decaying of turbulent kinetic energy should follow a power law behavior. In accordance with the power law, the coefficients for the dissipation rate of turbulent kinetic energy are not universal. Also, the other coefficients as well as the dissipation coefficient are not constant. As a result, a suitable coefficients can be varied according to each of the flow. The changes of flow over the backward facing step in accordance with model constants of the ${\kappa}-{\varepsilon}$ models show that the reattachment length is dependent on the growth rate(${\lambda}$) and the ${\kappa}-{\varepsilon}$ models can be improved the prediction performance by changing the model constants about the recirculating flow. In addition, it was investigated for the curvature correction effect of the ${\kappa}-{\varepsilon}$ models in the recirculating flow. Overall, the curvature corrected ${\kappa}-{\varepsilon}$ models showed an excellent prediction performance.

Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-Benzoates with Potassium Ethoxide: Reaction Mechanism and Role of K+ Ion

  • Kim, Song-I;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.225-230
    • /
    • 2014
  • A kinetic study on nucleophilic substitution reactions of 4-nitrophenyl X-substituted-benzoates (7a-i) with EtOK in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of pseudo-first-order rate constants ($k_{obsd}$) vs. [EtOK] curve upward. Dissection of $k_{obsd}$ into the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOK (i.e., $k_{EtO^-}$ and $k_{EtOK}$, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. Hammett plots for the reactions of 7a-i with the dissociated $EtO^-$ and ion-paired EtOK exhibit excellent linear correlations with ${\rho}_X$ = 3.00 and 2.47, respectively. The reactions have been suggested to proceed through a stepwise mechanism in which departure of the leaving-group occurs after the RDS. The correlation of the $k_{EtOK}/k_{EtO^-}$ ratio with the ${\sigma}_X$ constants exhibits excellent linearity with a slope of -0.53. It is concluded that the ion-paired EtOK catalyzes the reaction by increasing the electrophilicity of the reaction center rather than by enhancing the nucleofugality of the leaving group.

Kinetic Study on the Alkaline Hydrolysis of the Substituted Phenyl N,N-diethyl-P-benzylphosphonamidates (치환 Phenyl N,N-diethyl-P-benzylphosphonamidates의 염기성 가수분해 반응에 대한 속도론적 연구)

  • Shon, Kyoung Hwa;Shin, Gap Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.1
    • /
    • pp.85-91
    • /
    • 1999
  • The second order rate constants for the hydrolysis of substituted phenyl N,N-diethyl-P-benzylphosphonamidates (2,4-$(NO_2)_2$, 4-$NO_2$, 4-CN, 4-Cl, 4-H)in 20% dioxane-water (v/v) have been determined by UV/Vis spectrophotometric method at various temperatures. The activation parameters (Ea, ${\Delta}H^{\neq}$,${\Delta}S^{\neq}$) were calculated from the rate constants and the reaction constant ($\rho$) was also estimated by Hammett equation. The activation entropies of the title reactions show considerably negative values, this result is not consistent with a dissociative mechanism (EA) in which a positive or a slightly negative value of the entropy of activation should be expected. Further, kinetic evidence for an associative mechanism (AE) was obtained from the linear free energy relationship. By the results of kinetic study for the alkaline hydrolysis of substituted phenyl N,N-diethyl-P-benzylphosphonamidates, it may be concluded that these reactions proceed through an associative mechanism.

  • PDF

Properties and Kinetics of Glutamate Dehydrogenase of Corynebacterium glutamicum (Corynebacterium glutamicum의 Glutamate Dehydrogenase의 효소학적 성질과 Kinetics)

  • Park, Mee-Sun;Park, Soon-Young;Kim, Sung-Jin;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.552-555
    • /
    • 1989
  • A 150-fold purified preparation of NADPH-specific glutamate dehydrogenase of Corynebacterium glutamicum (1) was used for the determination of kinetic parameters of the substrates, NADPH, NH$_4$Cl, and $\alpha$-ketoglutarate in the direction of glutamate synthesis. The kinetic constants determined from this study suggest a biosynthetic role for the enzyme, Based on the analysis of the result derived from initial velocity, the reaction mechanism was postulated to be ordered addition with NADPH as a first substrate to bind in the forward direction. Of the several metabolites tested for a possible function in the regulation of glutamate dehydrogenase activity, only malate and citrate were appeared to have an appreciable influence on the enzyme, Potassium chloride showed to be the most effective for the enzyme activity.

  • PDF

Detection and Kinetics of Mucosal Pathogenic Bacteria Binding with Polysaccharides

  • Chung, Kyong-Hwan;Park, Jung-Soon;Hwang, Hyun-Soo;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1191-1197
    • /
    • 2007
  • The detection and kinetics of mucosal pathogenic bacteria binding on polysaccharide ligands were studied using a surface plasmon resonance biosensor. The kinetic model applied curve-fitting to the experimental surface plasmon resonance sensorgrams to evaluate the binding interactions. The kinetic parameters for the mucosal pathogenic bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens) with the alginate ligand were determined from a kinetic model. In addition, the binding interactions of the mucosal pathogenic bacteria with polysaccharide binding pairs (Pseudomonas aeruginosa/alginate, Streptococcus pneumoniae/pneumococcal polysaccharide, Staphylococcus aureus/pectin) were also compared with their kinetic parameters. The rate constants of association for Pseudomonas aeruginosa with the alginate ligand were higher than those for Pseudomonas fluorescens. Serratia marcescens had no detectable interaction with the alginate ligand. The adhesion affinity of Pseudomonas aeruginosa with alginate was higher than that for the other binding pairs. The binding affinities of the pathogenic bacteria with their own polysaccharide were higher than that of Staphylococcus aureus with pectin. Measuring the contact angle was found to be a feasible method for detecting binding interactions between analytes and ligands.

Effect of Recalcitrant Organics on Bio-kinetic Coeffcient and Biodegradable in Box-mill Wastewater (판지공장 폐수 중 난분해성 유기물질이 동력학적 계수 및 생분해에 미치는 영향)

  • Cho, Yong Duck;Lee, Sang Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2006
  • The research aims to provide the basic data for practical applications by correlating the bio-kinetic coefficients with the load of recalcitrant organic matter in box-mill wastewater. The activated sludge process was employed to a Wastewater disposal plant in an industrial setting, increase of consequently leading to the organic load. The parameter values derived by Monod-kinetic analysis were as follows:specific substrate removal rate $K_{max}=0.17day^{-1}$, half saturation constants $K_s=60.37mg/l$, decay coefficient $K_d=0.142day^{-1}$, microbial yield coefficient y = 0.388mg/mg, and max specific growth rate ${\mu}_{max}=0.006day^{-1}$. In view of biodegradability, the $TCOD_{Mn}/TBOD_5$ ratios of inflow and outflow were 1.07 and 1.41, and the $SCOD_{Mn}/SBOD_5$ ratios of inflow and outflow were 1.10 and 1.50, respectively. The higher $TCOD_{Mn}/TBOD_5$ ratio of outflow indicated that metabolites of a microorganism have accumulated in the cells.