• 제목/요약/키워드: kinesthetic sensation

검색결과 7건 처리시간 0.022초

Experimental Analysis on Influences of Kinesthetic and Visual Sensations in a Human-Machine Cooperative System Considering Machine Dynamics

  • Tomonori, Yamamoto;Yoshiki, Matsuo;Takeshi, Inaba
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1553-1558
    • /
    • 2003
  • The authors investigate influences of manipulator dynamics on and roles of kinesthetic sensation and visual sensation in a Human-Machine Cooperative System (HMCS). At first, the general structure and essential transfer functions of HMCSs are described based on the previous work. Then, after showing theoretical treatment of manipulator dynamics, this paper analyzes the influences on HMCSs in two cases: one is the control design focusing on tool dynamics and reaction force transfer function, and the other is that specifies maneuver transfer function and transfer function for object dynamics variation. In addition to conventional experiments only employing kinesthetic sensation, other experiments with both kinesthetic and visual sensations are performed to examine difference in the roles of these sensations and the validity of the design without the visual sensation.

  • PDF

발달장애아동을 위한 진동감, 굳기감, 온열감 장치 (A Vibrotactile, Kinesthetic, and Thermal device for Developmental Disorder Children)

  • 임다미;윤인호;김상연;정구철
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권7호
    • /
    • pp.1435-1441
    • /
    • 2017
  • 본 논문의 목적은 발달장애아동들을 대상으로 하여 사용자들이 교육 플랫폼을 터치했을 때 다양한 햅틱 감각을 경험할 수 있는 교육 플랫폼을 설계 개발하는 데 있다. 본 연구에서 제안하는 상호작용형 교육 플랫폼은 굳기감 제시 모듈, 진동감 제시 모듈, 온열감 제시 모듈과 제어 모듈로 구성되어 있다. 제안하는 교육 플랫폼은 충분한 세기의 압감, 진동감, 온도를 생성하고, 이를 사용자가 잘 느낄 수 있도록 설계하는 데에 중점을 두었다. 개발된 교육 플랫폼의 성능을 알아보기 위해 온열감, 진동감, 압감에 대한 사용자 실험을 진행하였고, 세 가지 모듈 모두 안전하게 교육 플랫폼으로 활용 가능한 범위에서 작동하는 것으로 나타났다.

질감 제시 장치를 이용한 촉감인지 특성 연구 (Study of Human Tactile Sensing Characteristics Using Tactile Display System)

  • 손승우;경기욱;양기훈;권동수
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.451-456
    • /
    • 2005
  • This paper describes three kinds of experiments and analysis of their results related to human tactile sensitivity using an integrated tactile display system. The device can provide vibration, normal pressure and lateral slip/stretch which are important physical quantities to sense texture. We have tried to find out the efficient method of stimulating, limitation of surface discrimination by kinesthetic farce feedback and the effectiveness of the combination of kinesthetic force and tactile feedback. Seven kinds of different stimulating methods were carried out and they are single or combination of the kinesthetic force, normal static pressure, vibration, active/passive shear and moving wave. Both prototype specimen and stimulus using tactile display were provided to all examinees and they were allowed to answer the most similar sample. The experimental results show that static pressure is proper stimulus for the display of micro shape of the surface and vibrating stimulus is more effective for the display of fine surface. And the sensitivities of active touch and passive touch are compared. Since kinesthetic force feedback is appropriate to display shape and stiffness of an object, but roughness display has a limitation of resolution, the concurrent providing methods of kinesthetic and tactile feedback are applied to simulate physical properties during touching an object.

텐던 구동방식의 장착형 역/촉감 제시기구의 개발에 관한 연구 (Development of exoskeletal type tendon driven haptic device)

  • 이규훈;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1285-1288
    • /
    • 1997
  • The basic technology of virtual reality can be described as the cognition of the condition change in virtual world by stimulating the visual, auditory, kinesthetic and tactile sensation. Among these, the kinesthetic and tactile sensation is one of the most important things to recognize the interaction. In this paper, it is addressed the haptic device which help the human feel the sense of the operator, and is designed in modular type to expand for five fingers later. the haptic device is driven by tendon and ultrasonic motors located in the wrist part. Each joint is actuated by coupled tendons and adopts more actrator by one than the number of the joints, called 'N+1 type'. The haptic device adopts metamorphic 4-bar linkage structure and the length of linkages, shape and the location of joint displacement sensor are optimized through the analysis.

  • PDF

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

마우스형 통합 질감 제시 시스템 개발 (Development of an Integrated Mouse Type Tactile Display System)

  • 경기욱;손승우;양기훈;김문상;권동수
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.445-450
    • /
    • 2005
  • In this paper, we suggest an integrated tactile display system that provides kinesthetic force, pressure distribution, vibration and slip/stretch. The system consists of two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to the skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate the characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device, using eight piezoelectric bimorphs and a linear actuator, Is implemented and attached to a 2 DOF translational force feedback device to simultaneously simulate the texture and stiffness of the object. As a result, we find out that the capability of the suggested device is sufficient to display physical quantities to display the texture.

Tactile feedback in tangible space

  • Yun, Seung-Kook;Kang, Sung-Chul;Yang, Gi-Hun;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1802-1807
    • /
    • 2005
  • Tangible interface can be understood as a newly defined concept, which can provide an effective and seamless interaction between the human as a subjective existence and the cyberspace as an objective existence. Tactile sensation is essential for many exploration and manipulation tasks in the tangible space. In this paper, we suggest the design of an integrated tactile sensor-display system that provides both of sensing and feedback with kinesthetic force, pressure distribution, vibration and slip/stretch. A new tactile sensor with PDVF strips and display system with bimorph actuators has been developed and integrated by developed signal processing algorithm. In the scenario of haptic navigation in the tangible space, tactile feedback system is successfully experimented.

  • PDF