• Title/Summary/Keyword: kinematics graphs

Search Result 4, Processing Time 0.018 seconds

Interpretation Abilities of American and Korean Students in Kinematics Graphs

  • Kim, Tae-Sun;Kim, Ji-Na;Kim, Beom-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.6
    • /
    • pp.671-677
    • /
    • 2005
  • Line graphs are powerful tools in conveying complicated relationships and ideas because line graphs show the relationship that exists between two continuous variables. Also, line graphs can show readers the variations in variables and correlate two variables in a two dimensional space. For these reasons, line graphs have a significant role in physics, especially kinematics. To what extent are Korean college and secondary students able to understand kinematics graphs? Is there a difference between American students and Korean students in interpreting kinematics graphs? The TUG-K instrument (Test of Understanding Graphs in Kinematics) was administered to students in both countries. The results show the difference between American students and Korean students by TUG-K objective. Also, the results are discussed in terms of a graph comprehension theory.

Testing undergraduate interpretation of kinematics graphs (우리나라 대학생들의 운동학 그래프 이해 능력)

  • Kim, Tae-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2006
  • Line graphs are powerful tools in conveying complicated relationships and ideas because they show the relationship that exists between two continuous variables. Also, they can show readers the variations in variables and correlate two variables in a two dimensional space, and therefore, line graphs have a significant role in physics, especially kinematics. One of the purposes of the Test of Understanding Graphs in Kinematics (TUG-K) was to uncover student problems with interpreting kinematics. The TUG-K was given to Korean college students in 2004. To what extent are Korean college students able to understand such important line graphs? Analysis of the results of the TUG-K showed in which objectives students' strengths and weaknesses are found. This study investigates Korean college students' interpretation skills of kinematics graphs and the results of the study will be used to help instructors teach kinematics graphs more effectively.

The Effect of Force and Motion Conceptions into the Kinematics Graph Construction (대학생의 운동학 그래프 작성에 대한 역학 개념의 효과)

  • Kwon, Sung-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.383-393
    • /
    • 1997
  • In order to study the effect of student's conceptions about force and motion into the graph construction in kinematics in college physics course, the tasks of constructing the qualitative graph in the similar problem context used in force conception was asked to the first 74 and third 97 student teacher in teachers' university. The frequencies analysis showed that student teachers had the naive conceptions that the throwing force was still acted to a upwarding ball. They also had the popular Aristotelian views about motion. These naive conceptions coexisted with the scientific conception about gravitational force. In a simple pendulum problem no one had the correct acceleration concepts which varies the direction in swing. This result suggest that student teacher had more difficulties in a acceleration problem than in a velocity problem In v-t and a-t graph construction tasks, the number of categories of a-t graphs were more than that of v-t graphs. There were many graph errors in a sign of velocity and acceleration. The acceleration conceptions without the relations of changes in velocity made the kinematics graphs more various shapes. The force and motion conceptions influenced the ability to construct the kinematics graphs.

  • PDF

Free vibration of cross-ply laminated plates based on higher-order shear deformation theory

  • Javed, Saira;Viswanathan, K.K.;Izyan, M.D. Nurul;Aziz, Z.A.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.473-484
    • /
    • 2018
  • Free vibration of cross-ply laminated plates using a higher-order shear deformation theory is studied. The arbitrary number of layers is oriented in symmetric and anti-symmetric manners. The plate kinematics are based on higher-order shear deformation theory (HSDT) and the vibrational behaviour of multi-layered plates are analysed under simply supported boundary conditions. The differential equations are obtained in terms of displacement and rotational functions by substituting the stress-strain relations and strain-displacement relations in the governing equations and separable method is adopted for these functions to get a set of ordinary differential equations in term of single variable, which are coupled. These displacement and rotational functions are approximated using cubic and quantic splines which results in to the system of algebraic equations with unknown spline coefficients. Incurring the boundary conditions with the algebraic equations, a generalized eigen value problem is obtained. This eigen value problem is solved numerically to find the eigen frequency parameter and associated eigenvectors which are the spline coefficients.The material properties of Kevlar-49/epoxy, Graphite/Epoxy and E-glass epoxy are used to show the parametric effects of the plates aspect ratio, side-to-thickness ratio, stacking sequence, number of lamina and ply orientations on the frequency parameter of the plate. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.